public FpFieldElement(
			BigInteger	q,
			BigInteger	x)
		{
			if (x.CompareTo(q) >= 0)
				throw new ArgumentException("x value too large in field element");

			this.q = q;
			this.x = x;
		}
		// D.1.4 91
		/**
		 * return a sqrt root - the routine verifies that the calculation
		 * returns the right value - if none exists it returns null.
		 */
		public override ECFieldElement Sqrt()
		{
			if (!q.TestBit(0))
				throw new NotImplementedException("even value of q");

			// p mod 4 == 3
			if (q.TestBit(1))
			{
				// TODO Can this be optimised (inline the Square?)
				// z = g^(u+1) + p, p = 4u + 3
				ECFieldElement z = new FpFieldElement(q, x.ModPow(q.ShiftRight(2).Add(BigInteger.One), q));

				return z.Square().Equals(this) ? z : null;
			}

			// p mod 4 == 1
			BigInteger qMinusOne = q.Subtract(BigInteger.One);

			BigInteger legendreExponent = qMinusOne.ShiftRight(1);
			if (!(x.ModPow(legendreExponent, q).Equals(BigInteger.One)))
				return null;

			BigInteger u = qMinusOne.ShiftRight(2);
			BigInteger k = u.ShiftLeft(1).Add(BigInteger.One);

			BigInteger Q = this.x;
			BigInteger fourQ = Q.ShiftLeft(2).Mod(q);

			BigInteger U, V;
			do
			{
				Random rand = new Random();
				BigInteger P;
				do
				{
					P = new BigInteger(q.BitLength, rand);
				}
				while (P.CompareTo(q) >= 0
					|| !(P.Multiply(P).Subtract(fourQ).ModPow(legendreExponent, q).Equals(qMinusOne)));

				BigInteger[] result = fastLucasSequence(q, P, Q, k);
				U = result[0];
				V = result[1];

				if (V.Multiply(V).Mod(q).Equals(fourQ))
				{
					// Integer division by 2, mod q
					if (V.TestBit(0))
					{
						V = V.Add(q);
					}

					V = V.ShiftRight(1);

					Debug.Assert(V.Multiply(V).Mod(q).Equals(x));

					return new FpFieldElement(q, V);
				}
			}
			while (U.Equals(BigInteger.One) || U.Equals(qMinusOne));

			return null;


//			BigInteger qMinusOne = q.Subtract(BigInteger.One);
//
//			BigInteger legendreExponent = qMinusOne.ShiftRight(1);
//			if (!(x.ModPow(legendreExponent, q).Equals(BigInteger.One)))
//				return null;
//
//			Random rand = new Random();
//			BigInteger fourX = x.ShiftLeft(2);
//
//			BigInteger r;
//			do
//			{
//				r = new BigInteger(q.BitLength, rand);
//			}
//			while (r.CompareTo(q) >= 0
//				|| !(r.Multiply(r).Subtract(fourX).ModPow(legendreExponent, q).Equals(qMinusOne)));
//
//			BigInteger n1 = qMinusOne.ShiftRight(2);
//			BigInteger n2 = n1.Add(BigInteger.One);
//
//			BigInteger wOne = WOne(r, x, q);
//			BigInteger wSum = W(n1, wOne, q).Add(W(n2, wOne, q)).Mod(q);
//			BigInteger twoR = r.ShiftLeft(1);
//
//			BigInteger root = twoR.ModPow(q.Subtract(BigInteger.Two), q)
//				.Multiply(x).Mod(q)
//				.Multiply(wSum).Mod(q);
//
//			return new FpFieldElement(q, root);
		}
		internal bool RabinMillerTest(
			int		certainty,
			Random	random)
		{
			Debug.Assert(certainty > 0);
			Debug.Assert(BitLength > 2);
			Debug.Assert(TestBit(0));

			// let n = 1 + d . 2^s
			BigInteger n = this;
			BigInteger nMinusOne = n.Subtract(One);
			int s = nMinusOne.GetLowestSetBit();
			BigInteger r = nMinusOne.ShiftRight(s);

			Debug.Assert(s >= 1);

			do
			{
				// TODO Make a method for random BigIntegers in range 0 < x < n)
				// - Method can be optimized by only replacing examined bits at each trial
				BigInteger a;
				do
				{
					a = new BigInteger(n.BitLength, random);
				}
				while (a.CompareTo(One) <= 0 || a.CompareTo(nMinusOne) >= 0);

				BigInteger y = a.ModPow(r, n);

				if (!y.Equals(One))
				{
					int j = 0;
					while (!y.Equals(nMinusOne))
					{
						if (++j == s)
							return false;

						y = y.ModPow(Two, n);

						if (y.Equals(One))
							return false;
					}
				}

				certainty -= 2; // composites pass for only 1/4 possible 'a'
			}
			while (certainty > 0);

			return true;
		}