/// <summary>
        ///
        /// </summary>
        public void AssembleMatrix <T>(BlockMsrMatrix OpMatrix, double[] OpAffine,
                                       UnsetteledCoordinateMapping RowMapping, UnsetteledCoordinateMapping ColMapping,
                                       IEnumerable <T> CurrentState, Dictionary <SpeciesId, MultidimensionalArray> AgglomeratedCellLengthScales, double time,
                                       int CutCellQuadOrder, VectorField <SinglePhaseField> SurfaceForce,
                                       VectorField <SinglePhaseField> LevelSetGradient, SinglePhaseField ExternalyProvidedCurvature,
                                       bool[] updateSolutionParams = null, DGField[] ExtParams = null) where T : DGField
        {
            //IEnumerable<T> CoupledCurrentState = null, IEnumerable<T> CoupledParams = null) where T : DGField {

            // checks:
            if (ColMapping.BasisS.Count != this.m_XOp.DomainVar.Count)
            {
                throw new ArgumentException();
            }
            if (RowMapping.BasisS.Count != this.m_XOp.CodomainVar.Count)
            {
                throw new ArgumentException();
            }

            int D = this.LsTrk.GridDat.SpatialDimension;

            if (CurrentState != null && !config.solveEnergy && !config.solveHeat && CurrentState.Count() != (D + 1))
            {
                throw new ArgumentException();
            }

            if (OpMatrix == null && CurrentState == null)
            {
                throw new ArgumentException();
            }

            DGField[] U0;
            if (CurrentState != null)
            {
                U0 = CurrentState.Take(D).ToArray();
            }
            else
            {
                U0 = null;
            }



            // parameter assembly
            // ==================
            #region param assembly

            LevelSet    Phi          = (LevelSet)(this.LsTrk.LevelSets[0]);
            SpeciesId[] SpcToCompute = AgglomeratedCellLengthScales.Keys.ToArray();


            // linearization velocity:
            DGField[] U0_U0mean;
            if (this.U0meanrequired)
            {
                XDGBasis U0meanBasis          = new XDGBasis(this.LsTrk, 0);
                VectorField <XDGField> U0mean = new VectorField <XDGField>(D, U0meanBasis, "U0mean_", XDGField.Factory);
                U0mean.Clear();
                if (this.physParams.IncludeConvection)
                {
                    ComputeAverageU(U0, U0mean, CutCellQuadOrder, LsTrk.GetXDGSpaceMetrics(SpcToCompute, CutCellQuadOrder, 1).XQuadSchemeHelper);
                }

                U0_U0mean = ArrayTools.Cat <DGField>(U0, U0mean);
            }
            else
            {
                U0_U0mean = new DGField[2 * D];
            }

            // linearization velocity:
            //if (this.U0meanrequired) {
            //    VectorField<XDGField> U0mean = new VectorField<XDGField>(U0_U0mean.Skip(D).Take(D).Select(f => ((XDGField)f)).ToArray());

            //    U0mean.Clear();
            //    if (this.physParams.IncludeConvection)
            //        ComputeAverageU(U0, U0mean, CutCellQuadOrder, LsTrk.GetXDGSpaceMetrics(SpcToCompute, CutCellQuadOrder, 1).XQuadSchemeHelper);
            //}


            // normals:
            SinglePhaseField[] Normals; // Normal vectors: length not normalized - will be normalized at each quad node within the flux functions.
            if (this.NormalsRequired)
            {
                if (LevelSetGradient == null)
                {
                    LevelSetGradient = new VectorField <SinglePhaseField>(D, Phi.Basis, SinglePhaseField.Factory);
                    LevelSetGradient.Gradient(1.0, Phi);
                }
                Normals = LevelSetGradient.ToArray();
            }
            else
            {
                Normals = new SinglePhaseField[D];
            }

            // curvature:
            SinglePhaseField Curvature;
            if (this.CurvatureRequired)
            {
                Curvature = ExternalyProvidedCurvature;
            }
            else
            {
                Curvature = null;
            }


            // velocity gradient vectors
            var       VelMap   = new CoordinateMapping(U0);
            DGField[] VelParam = VelMap.Fields.ToArray();

            VectorField <DGField> GradVelX = new VectorField <DGField>(D, VelParam[0].Basis, "VelocityXGradient", XDGField.Factory);
            for (int d = 0; d < D; d++)
            {
                foreach (var Spc in this.LsTrk.SpeciesIdS)
                {
                    DGField f_Spc = ((VelParam[0] as XDGField).GetSpeciesShadowField(Spc));
                    SubGrid sf    = this.LsTrk.Regions.GetSpeciesSubGrid(Spc);
                    (GradVelX[d] as XDGField).GetSpeciesShadowField(Spc).DerivativeByFlux(1.0, f_Spc, d, optionalSubGrid: sf);
                }
            }
            GradVelX.ForEach(F => F.CheckForNanOrInf(true, true, true));

            VectorField <DGField> GradVelY = new VectorField <DGField>(D, VelParam[0].Basis, "VelocityYGradient", XDGField.Factory);
            for (int d = 0; d < D; d++)
            {
                foreach (var Spc in this.LsTrk.SpeciesIdS)
                {
                    DGField f_Spc = ((VelParam[1] as XDGField).GetSpeciesShadowField(Spc));
                    SubGrid sf    = this.LsTrk.Regions.GetSpeciesSubGrid(Spc);
                    (GradVelY[d] as XDGField).GetSpeciesShadowField(Spc).DerivativeByFlux(1.0, f_Spc, d, optionalSubGrid: sf);
                }
            }
            GradVelY.ForEach(F => F.CheckForNanOrInf(true, true, true));


            VectorField <DGField> GradVelXGradX = new VectorField <DGField>(D, VelParam[0].Basis, "VelocityXGradX_Gradient", XDGField.Factory);
            for (int d = 0; d < D; d++)
            {
                foreach (var Spc in this.LsTrk.SpeciesIdS)
                {
                    DGField f_Spc = ((GradVelX[0] as XDGField).GetSpeciesShadowField(Spc));
                    SubGrid sf    = this.LsTrk.Regions.GetSpeciesSubGrid(Spc);
                    (GradVelXGradX[d] as XDGField).GetSpeciesShadowField(Spc).DerivativeByFlux(1.0, f_Spc, d, optionalSubGrid: sf);
                }
            }
            GradVelXGradX.ForEach(F => F.CheckForNanOrInf(true, true, true));

            VectorField <DGField> GradVelXGradY = new VectorField <DGField>(D, VelParam[0].Basis, "VelocityXGradY_Gradient", XDGField.Factory);
            for (int d = 0; d < D; d++)
            {
                foreach (var Spc in this.LsTrk.SpeciesIdS)
                {
                    DGField f_Spc = ((GradVelX[1] as XDGField).GetSpeciesShadowField(Spc));
                    SubGrid sf    = this.LsTrk.Regions.GetSpeciesSubGrid(Spc);
                    (GradVelXGradY[d] as XDGField).GetSpeciesShadowField(Spc).DerivativeByFlux(1.0, f_Spc, d, optionalSubGrid: sf);
                }
            }
            GradVelXGradY.ForEach(F => F.CheckForNanOrInf(true, true, true));

            VectorField <DGField> GradVelYGradX = new VectorField <DGField>(D, VelParam[0].Basis, "VelocityYGradX_Gradient", XDGField.Factory);
            for (int d = 0; d < D; d++)
            {
                foreach (var Spc in this.LsTrk.SpeciesIdS)
                {
                    DGField f_Spc = ((GradVelY[0] as XDGField).GetSpeciesShadowField(Spc));
                    SubGrid sf    = this.LsTrk.Regions.GetSpeciesSubGrid(Spc);
                    (GradVelYGradX[d] as XDGField).GetSpeciesShadowField(Spc).DerivativeByFlux(1.0, f_Spc, d, optionalSubGrid: sf);
                }
            }
            GradVelYGradX.ForEach(F => F.CheckForNanOrInf(true, true, true));

            VectorField <DGField> GradVelYGradY = new VectorField <DGField>(D, VelParam[0].Basis, "VelocityYGradY_Gradient", XDGField.Factory);
            for (int d = 0; d < D; d++)
            {
                foreach (var Spc in this.LsTrk.SpeciesIdS)
                {
                    DGField f_Spc = ((GradVelY[1] as XDGField).GetSpeciesShadowField(Spc));
                    SubGrid sf    = this.LsTrk.Regions.GetSpeciesSubGrid(Spc);
                    (GradVelYGradY[d] as XDGField).GetSpeciesShadowField(Spc).DerivativeByFlux(1.0, f_Spc, d, optionalSubGrid: sf);
                }
            }
            GradVelYGradY.ForEach(F => F.CheckForNanOrInf(true, true, true));



            // pressure and gradient
            var       PressMap   = new CoordinateMapping(CurrentState.ToArray()[D]);
            DGField[] PressParam = PressMap.Fields.ToArray();

            VectorField <DGField> PressGrad = new VectorField <DGField>(D, PressParam[0].Basis, "PressureGrad", XDGField.Factory);
            for (int d = 0; d < D; d++)
            {
                foreach (var Spc in this.LsTrk.SpeciesIdS)
                {
                    DGField f_Spc = ((PressParam[0] as XDGField).GetSpeciesShadowField(Spc));
                    SubGrid sf    = this.LsTrk.Regions.GetSpeciesSubGrid(Spc);
                    (PressGrad[d] as XDGField).GetSpeciesShadowField(Spc).DerivativeByFlux(1.0, f_Spc, d, optionalSubGrid: sf);
                }
            }
            PressGrad.ForEach(F => F.CheckForNanOrInf(true, true, true));

            // gravity
            var       GravMap   = new CoordinateMapping(ExtParams);
            DGField[] GravParam = GravMap.Fields.ToArray();


            // heat flux for evaporation
            DGField[] HeatFluxParam = new DGField[D];
            if (config.solveHeat)
            {
                if (config.conductMode == ConductivityInSpeciesBulk.ConductivityMode.SIP && updateSolutionParams[D + 1])
                {
                    HeatFluxParam = new VectorField <XDGField>(D, CurrentState.ToArray()[D + 1].Basis, "HeatFlux0_", XDGField.Factory).ToArray();
                    Dictionary <string, double> kSpc = new Dictionary <string, double>();
                    kSpc.Add("A", -thermParams.k_A);
                    kSpc.Add("B", -thermParams.k_B);
                    XNSEUtils.ComputeGradientForParam(CurrentState.ToArray()[D + 1], HeatFluxParam, this.LsTrk, kSpc, this.LsTrk.Regions.GetCutCellSubGrid());
                }
                else if (config.conductMode != ConductivityInSpeciesBulk.ConductivityMode.SIP && updateSolutionParams[D + 2])
                {
                    var HeatFluxMap = new CoordinateMapping(CurrentState.ToArray().GetSubVector(D + 2, D));
                    HeatFluxParam = HeatFluxMap.Fields.ToArray();
                }
                else
                {
                    HeatFluxParam = storedParams.GetSubVector(2 * D + 4, D);
                }
            }
            if (ExtParams != null)
            {
                HeatFluxParam = ExtParams;
            }

            #endregion


            // concatenate everything
            var Params = ArrayTools.Cat <DGField>(
                U0_U0mean,
                Normals,
                Curvature,
                ((SurfaceForce != null) ? SurfaceForce.ToArray() : new SinglePhaseField[D]));

            if (config.solveEnergy)
            {
                Params = ArrayTools.Cat <DGField>(Params.ToArray <DGField>(),
                                                  GradVelX,
                                                  GradVelY,
                                                  GradVelXGradX,
                                                  GradVelXGradY,
                                                  GradVelYGradX,
                                                  GradVelYGradY,
                                                  PressParam,
                                                  PressGrad,
                                                  GravMap);
            }

            if (config.solveHeat)
            {
                Params = ArrayTools.Cat <DGField>(Params.ToArray <DGField>(),
                                                  CurrentState.ToArray <DGField>().GetSubVector(D + 1, 1),
                                                  HeatFluxParam,
                                                  new SinglePhaseField[1]);
            }


            // store old params
            for (int p = 0; p < Params.Length; p++)
            {
                if (Params[p] != null)
                {
                    storedParams[p] = Params[p].CloneAs();
                }
            }



            // advanced settings for the navier slip boundary condition
            // ========================================================


            CellMask SlipArea;
            switch (this.dntParams.GNBC_Localization)
            {
            case NavierSlip_Localization.Bulk: {
                SlipArea = this.LsTrk.GridDat.BoundaryCells.VolumeMask;
                break;
            }

            case NavierSlip_Localization.ContactLine: {
                SlipArea = null;
                break;
            }

            case NavierSlip_Localization.Nearband: {
                SlipArea = this.LsTrk.GridDat.BoundaryCells.VolumeMask.Intersect(this.LsTrk.Regions.GetNearFieldMask(this.LsTrk.NearRegionWidth));
                break;
            }

            case NavierSlip_Localization.Prescribed: {
                throw new NotImplementedException();
            }

            default:
                throw new ArgumentException();
            }


            MultidimensionalArray SlipLengths;
            SlipLengths = this.LsTrk.GridDat.Cells.h_min.CloneAs();
            SlipLengths.Clear();
            //SlipLengths.AccConstant(-1.0);
            if (SlipArea != null)
            {
                foreach (Chunk cnk in SlipArea)
                {
                    for (int i = cnk.i0; i < cnk.JE; i++)
                    {
                        switch (this.dntParams.GNBC_SlipLength)
                        {
                        case NavierSlip_SlipLength.hmin_DG: {
                            int degU = ColMapping.BasisS.ToArray()[0].Degree;
                            SlipLengths[i] = this.LsTrk.GridDat.Cells.h_min[i] / (degU + 1);
                            break;
                        }

                        case NavierSlip_SlipLength.hmin_Grid: {
                            SlipLengths[i] = SlipLengths[i] = this.LsTrk.GridDat.Cells.h_min[i];
                            break;
                        }

                        case NavierSlip_SlipLength.Prescribed_SlipLength: {
                            SlipLengths[i] = this.physParams.sliplength;
                            break;
                        }

                        case NavierSlip_SlipLength.Prescribed_Beta: {
                            SlipLengths[i] = -1.0;
                            break;
                        }
                        }
                    }
                }
            }


            // interface coefficients
            // ======================

            MultidimensionalArray lambdaI, muI;
            lambdaI = SlipLengths.CloneAs();
            lambdaI.Clear();
            muI = SlipLengths.CloneAs();
            muI.Clear();

            foreach (Chunk cnk in this.LsTrk.Regions.GetCutCellMask())
            {
                for (int i = cnk.i0; i < cnk.JE; i++)
                {
                    double lI = 0.0;
                    double mI = 0.0;

                    // do the magic!!!
                    if (this.LsTrk.GridDat.Cells.CellCenter[i, 0] > 0 && this.LsTrk.GridDat.Cells.CellCenter[i, 1] > 0)
                    {
                    }
                    if (this.LsTrk.GridDat.Cells.CellCenter[i, 0] > 0 && this.LsTrk.GridDat.Cells.CellCenter[i, 1] < 0)
                    {
                        //lI = config.physParams.Sigma;
                        mI = config.physParams.Sigma;
                    }
                    if (this.LsTrk.GridDat.Cells.CellCenter[i, 0] < 0 && this.LsTrk.GridDat.Cells.CellCenter[i, 1] < 0)
                    {
                        //lI = -config.physParams.Sigma;
                        mI = -config.physParams.Sigma;
                    }
                    if (this.LsTrk.GridDat.Cells.CellCenter[i, 0] < 0 && this.LsTrk.GridDat.Cells.CellCenter[i, 1] > 0)
                    {
                        //lI = 10 * config.physParams.Sigma;
                        mI = 10 * config.physParams.Sigma;
                    }

                    lambdaI[i] = lI;
                    muI[i]     = mI;
                }
            }



            // assemble the matrix & affine vector
            // ===================================

            IDictionary <SpeciesId, MultidimensionalArray> InterfaceLengths = this.LsTrk.GetXDGSpaceMetrics(this.LsTrk.SpeciesIdS.ToArray(), CutCellQuadOrder).CutCellMetrics.InterfaceArea;

            BitArray EvapMicroRegion = this.LsTrk.GridDat.GetBoundaryCells().GetBitMask();
            EvapMicroRegion.SetAll(false);

            // compute matrix
            if (OpMatrix != null)
            {
                XSpatialOperatorMk2.XEvaluatorLinear mtxBuilder = this.m_XOp.GetMatrixBuilder(LsTrk, ColMapping, Params, RowMapping);

                foreach (var kv in AgglomeratedCellLengthScales)
                {
                    mtxBuilder.CellLengthScales[kv.Key] = kv.Value;
                    this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["SlipLengths"]     = SlipLengths;
                    this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["EvapMicroRegion"] = EvapMicroRegion;
                    if (config.prescribedMassflux != null)
                    {
                        double[] dummyX = new double[] { 0.0, 0.0 };
                        this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["prescribedMassflux"] = config.prescribedMassflux(dummyX, time);
                    }
                }

                if (this.m_XOp.SurfaceElementOperator.TotalNoOfComponents > 0)
                {
                    foreach (var kv in InterfaceLengths)
                    {
                        this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["InterfaceLengths"] = kv.Value;
                        this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["lambda_interface"] = lambdaI;
                        this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["mu_interface"]     = muI;
                    }
                }

                mtxBuilder.time = time;

                mtxBuilder.ComputeMatrix(OpMatrix, OpAffine);
            }
            else
            {
                XSpatialOperatorMk2.XEvaluatorNonlin eval = this.m_XOp.GetEvaluatorEx(this.LsTrk,
                                                                                      CurrentState.ToArray(), Params, RowMapping);

                foreach (var kv in AgglomeratedCellLengthScales)
                {
                    eval.CellLengthScales[kv.Key] = kv.Value;
                    this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["SlipLengths"]     = SlipLengths;
                    this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["EvapMicroRegion"] = EvapMicroRegion;
                    if (config.prescribedMassflux != null)
                    {
                        double[] dummyX = new double[] { 0.0, 0.0 };
                        this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["prescribedMassflux"] = config.prescribedMassflux(dummyX, time);
                    }
                }

                if (this.m_XOp.SurfaceElementOperator.TotalNoOfComponents > 0)
                {
                    foreach (var kv in InterfaceLengths)
                    {
                        this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["InterfaceLengths"] = kv.Value;
                        this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["lambda_interface"] = lambdaI;
                        this.m_XOp.UserDefinedValues[this.LsTrk.GetSpeciesName(kv.Key)]["mu_interface"]     = muI;
                    }
                }

                eval.time = time;

                eval.Evaluate(1.0, 1.0, OpAffine);
            }
        }
Example #2
0
        /// <summary>
        ///
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="OpMatrix"></param>
        /// <param name="OpAffine"></param>
        /// <param name="RowMapping"></param>
        /// <param name="ColMapping"></param>
        /// <param name="CurrentState"></param>
        /// <param name="AgglomeratedCellLengthScales"></param>
        /// <param name="time"></param>
        /// <param name="CutCellQuadOrder"></param>
        /// <param name="SurfaceForce"></param>
        /// <param name="LevelSetGradient"></param>
        /// <param name="ExternalyProvidedCurvature"></param>
        public void AssembleMatrix <T>(BlockMsrMatrix OpMatrix, double[] OpAffine,
                                       UnsetteledCoordinateMapping RowMapping, UnsetteledCoordinateMapping ColMapping,
                                       IEnumerable <T> CurrentState, Dictionary <SpeciesId, MultidimensionalArray> AgglomeratedCellLengthScales, double time,
                                       int CutCellQuadOrder, VectorField <SinglePhaseField> SurfaceForce,
                                       VectorField <SinglePhaseField> LevelSetGradient, SinglePhaseField ExternalyProvidedCurvature,
                                       IEnumerable <T> CoupledCurrentState = null, IEnumerable <T> CoupledParams = null) where T : DGField
        {
            // checks:
            if (ColMapping.BasisS.Count != this.m_XOp.DomainVar.Count)
            {
                throw new ArgumentException();
            }
            if (RowMapping.BasisS.Count != this.m_XOp.CodomainVar.Count)
            {
                throw new ArgumentException();
            }

            int D = this.LsTrk.GridDat.SpatialDimension;

            if (CurrentState != null && CurrentState.Count() != (D + 1))
            {
                throw new ArgumentException();
            }

            if (OpMatrix == null && CurrentState == null)
            {
                throw new ArgumentException();
            }

            DGField[] U0;
            if (CurrentState != null)
            {
                U0 = CurrentState.Take(D).ToArray();
            }
            else
            {
                U0 = null;
            }



            // advanced settings for the navier slip boundary condition
            // ========================================================

            CellMask SlipArea;

            switch (this.dntParams.GNBC_Localization)
            {
            case NavierSlip_Localization.Bulk: {
                SlipArea = this.LsTrk.GridDat.BoundaryCells.VolumeMask;
                break;
            }

            case NavierSlip_Localization.ContactLine: {
                SlipArea = null;
                break;
            }

            case NavierSlip_Localization.Nearband: {
                SlipArea = this.LsTrk.GridDat.BoundaryCells.VolumeMask.Intersect(this.LsTrk.Regions.GetNearFieldMask(this.LsTrk.NearRegionWidth));
                break;
            }

            case NavierSlip_Localization.Prescribed: {
                throw new NotImplementedException();
            }

            default:
                throw new ArgumentException();
            }


            MultidimensionalArray SlipLengths;

            SlipLengths = this.LsTrk.GridDat.Cells.h_min.CloneAs();
            SlipLengths.Clear();
            //SlipLengths.AccConstant(-1.0);
            if (SlipArea != null)
            {
                foreach (Chunk cnk in SlipArea)
                {
                    for (int i = cnk.i0; i < cnk.JE; i++)
                    {
                        switch (this.dntParams.GNBC_SlipLength)
                        {
                        case NavierSlip_SlipLength.hmin_DG: {
                            int degU = ColMapping.BasisS.ToArray()[0].Degree;
                            SlipLengths[i] = this.LsTrk.GridDat.Cells.h_min[i] / (degU + 1);
                            break;
                        }

                        case NavierSlip_SlipLength.hmin_Grid: {
                            SlipLengths[i] = SlipLengths[i] = this.LsTrk.GridDat.Cells.h_min[i];
                            break;
                        }

                        case NavierSlip_SlipLength.Prescribed_SlipLength: {
                            SlipLengths[i] = this.physParams.sliplength;
                            break;
                        }

                        case NavierSlip_SlipLength.Prescribed_Beta: {
                            SlipLengths[i] = -1.0;
                            break;
                        }
                        }
                    }
                }
            }


            // parameter assembly
            // ==================

            LevelSet Phi = (LevelSet)(this.LsTrk.LevelSets[0]);

            SpeciesId[] SpcToCompute = AgglomeratedCellLengthScales.Keys.ToArray();

            // normals:
            SinglePhaseField[] Normals; // Normal vectors: length not normalized - will be normalized at each quad node within the flux functions.
            if (this.NormalsRequired)
            {
                if (LevelSetGradient == null)
                {
                    LevelSetGradient = new VectorField <SinglePhaseField>(D, Phi.Basis, SinglePhaseField.Factory);
                    LevelSetGradient.Gradient(1.0, Phi);
                }
                Normals = LevelSetGradient.ToArray();
            }
            else
            {
                Normals = new SinglePhaseField[D];
            }

            // curvature:
            SinglePhaseField Curvature;

            if (this.CurvatureRequired)
            {
                Curvature = ExternalyProvidedCurvature;
            }
            else
            {
                Curvature = null;
            }

            // linearization velocity:
            DGField[] U0_U0mean;
            if (this.U0meanrequired)
            {
                XDGBasis U0meanBasis          = new XDGBasis(this.LsTrk, 0);
                VectorField <XDGField> U0mean = new VectorField <XDGField>(D, U0meanBasis, "U0mean_", XDGField.Factory);

                U0_U0mean = ArrayTools.Cat <DGField>(U0, U0mean);
            }
            else
            {
                U0_U0mean = new DGField[2 * D];
            }


            // heat flux for evaporation
            DGField[] HeatFluxParam = new DGField[D];
            if (CoupledCurrentState != null)
            {
                if (CoupledCurrentState.ToArray().Length == 3)
                {
                    var HeatFluxMap = new CoordinateMapping(CoupledCurrentState.ToArray().GetSubVector(1, D));
                    HeatFluxParam = HeatFluxMap.Fields.ToArray();
                }
                else if (CoupledCurrentState.ToArray().Length == 1)
                {
                    HeatFluxParam = new VectorField <XDGField>(D, CoupledCurrentState.ToArray()[0].Basis, "HeatFlux0_", XDGField.Factory).ToArray();
                    Dictionary <string, double> kSpc = new Dictionary <string, double>();
                    kSpc.Add("A", -thermParams.k_A);
                    kSpc.Add("B", -thermParams.k_B);
                    XNSEUtils.ComputeGradientForParam(CoupledCurrentState.ToArray()[0], HeatFluxParam, this.LsTrk, kSpc);
                }
                else
                {
                    throw new ArgumentException("wrong length of coupled current state");
                }
            }

            // Temperature gradient for evaporation
            //VectorField<DGField> GradTemp = new VectorField<DGField>(D, new XDGBasis(LsTrk, 0), XDGField.Factory);
            //if (CoupledCurrentState != null) {
            //    DGField Temp = CoupledCurrentState.ToArray()[0];
            //    GradTemp = new VectorField<DGField>(D, Temp.Basis, "GradTemp", XDGField.Factory);
            //    XNSEUtils.ComputeGradientForParam(Temp, GradTemp, this.LsTrk);
            //}

            // concatenate everything
            var Params = ArrayTools.Cat <DGField>(
                U0_U0mean,
                Normals,
                Curvature,
                ((SurfaceForce != null) ? SurfaceForce.ToArray() : new SinglePhaseField[D]),
                ((CoupledCurrentState != null) ? CoupledCurrentState.ToArray <DGField>() : new SinglePhaseField[1]),
                ((CoupledCurrentState != null) ? HeatFluxParam : new SinglePhaseField[D]),
                ((CoupledCurrentState != null) ? CoupledParams.ToArray <DGField>() : new SinglePhaseField[1]));


            // linearization velocity:
            if (this.U0meanrequired)
            {
                VectorField <XDGField> U0mean = new VectorField <XDGField>(U0_U0mean.Skip(D).Take(D).Select(f => ((XDGField)f)).ToArray());

                U0mean.Clear();
                if (this.physParams.IncludeConvection)
                {
                    ComputeAverageU(U0, U0mean, CutCellQuadOrder, LsTrk.GetXDGSpaceMetrics(SpcToCompute, CutCellQuadOrder, 1).XQuadSchemeHelper);
                }
            }



            // assemble the matrix & affine vector
            // ===================================

            IDictionary <SpeciesId, MultidimensionalArray> InterfaceLengths = this.LsTrk.GetXDGSpaceMetrics(this.LsTrk.SpeciesIdS.ToArray(), CutCellQuadOrder).CutCellMetrics.InterfaceArea;

            BitArray EvapMicroRegion = this.LsTrk.GridDat.GetBoundaryCells().GetBitMask();

            EvapMicroRegion.SetAll(false);

            // compute matrix
            if (OpMatrix != null)
            {
                XSpatialOperatorMk2.XEvaluatorLinear mtxBuilder = this.m_XOp.GetMatrixBuilder(LsTrk, ColMapping, Params, RowMapping, SpcToCompute);

                foreach (var kv in AgglomeratedCellLengthScales)
                {
                    mtxBuilder.SpeciesOperatorCoefficients[kv.Key].CellLengthScales = kv.Value;
                    mtxBuilder.SpeciesOperatorCoefficients[kv.Key].UserDefinedValues.Add("SlipLengths", SlipLengths);
                    mtxBuilder.SpeciesOperatorCoefficients[kv.Key].UserDefinedValues.Add("EvapMicroRegion", EvapMicroRegion);
                    if (config.prescribedMassflux != null)
                    {
                        mtxBuilder.SpeciesOperatorCoefficients[kv.Key].UserDefinedValues.Add("prescribedMassflux", config.prescribedMassflux(time));
                    }
                }

                if (this.m_XOp.SurfaceElementOperator.TotalNoOfComponents > 0)
                {
                    foreach (var kv in InterfaceLengths)
                    {
                        mtxBuilder.SpeciesOperatorCoefficients[kv.Key].UserDefinedValues.Add("InterfaceLengths", kv.Value);
                    }
                }

                mtxBuilder.time = time;

                mtxBuilder.ComputeMatrix(OpMatrix, OpAffine);
            }
            else
            {
                XSpatialOperatorMk2.XEvaluatorNonlin eval = this.m_XOp.GetEvaluatorEx(this.LsTrk,
                                                                                      CurrentState.ToArray(), Params, RowMapping,
                                                                                      SpcToCompute);

                foreach (var kv in AgglomeratedCellLengthScales)
                {
                    eval.SpeciesOperatorCoefficients[kv.Key].CellLengthScales = kv.Value;
                    eval.SpeciesOperatorCoefficients[kv.Key].UserDefinedValues.Add("SlipLengths", SlipLengths);
                    eval.SpeciesOperatorCoefficients[kv.Key].UserDefinedValues.Add("EvapMicroRegion", EvapMicroRegion);
                    if (config.prescribedMassflux != null)
                    {
                        eval.SpeciesOperatorCoefficients[kv.Key].UserDefinedValues.Add("prescribedMassflux", config.prescribedMassflux(time));
                    }
                }

                if (this.m_XOp.SurfaceElementOperator.TotalNoOfComponents > 0)
                {
                    foreach (var kv in InterfaceLengths)
                    {
                        eval.SpeciesOperatorCoefficients[kv.Key].UserDefinedValues.Add("InterfaceLengths", kv.Value);
                    }
                }

                eval.time = time;

                eval.Evaluate(1.0, 1.0, OpAffine);
            }
        }