Example #1
0
 public Node(string w, string T, double sc, double ps, Node prev)
 {
     word = w;
     tag = T;
     score = sc;
     PathScore = ps;
     PrevNode = prev;
 }
Example #2
0
        static void Main(string[] args)
        {
            string testPath = args[0];
            string BoundaryPath = args[1];
            string ModelFile = args[2];
            string OutFile = args[3];
            double BeamSize = Convert.ToDouble(args[4]);
            int TopN = Convert.ToInt32(args[5]);
            int TopK = Convert.ToInt32(args[6]);
            Dictionary<string, Dictionary<string, double>> ClassFeatureDict = new Dictionary<string, Dictionary<string, double>>();
            List<String> TagList = new List<string>();
            //Reads Model File and builds the required DS
            ReadModelFile(ClassFeatureDict, ModelFile,TagList);

            List<int> LineBoundaries = new List<int>();
            ReadBoundaryFile(BoundaryPath, LineBoundaries);
            Stopwatch stopwatch = Stopwatch.StartNew();

            // we are reading test data from here on
            string line,  prevT="", prev2Tag="";
            int docCount = 0,BoundaryValue=0,curWordNum=1;
            double Correct = 0,totalLines=0;
            double score = 0;

            List<Node> Parent = new List<Node>();
            StreamWriter Sw = new StreamWriter(OutFile);
            Sw.WriteLine("%%%%% test data:");
            using(StreamReader Sr = new StreamReader(testPath))
            {
                while ((line = Sr.ReadLine()) != null)
                {
                    if (String.IsNullOrWhiteSpace(line))
                        continue;
                    //score refers to the prob value for this node. it has to be set to zero for every word
                    score = 0;
                    totalLines++;
                    List<Node> CurCandidates = new List<Node>();
                    if(curWordNum > BoundaryValue)
                    {
                        // this means we have moved to a new training instance
                        BoundaryValue = LineBoundaries[docCount++];
                        curWordNum = 1;
                        Node Root = new Node("BOS", "BOS", 1,0);
                        //parents from previous test instance can be cleared when we are in a new one
                        Parent.Clear();
                        Parent.Add(Root);

                    }
                    string[] words = line.Split(new string[] { " " }, StringSplitOptions.RemoveEmptyEntries);
                    List<String> Features = new List<string>();
                    string curWord = "",word="";
                    double maxScore = double.MinValue;
                    //TODO : indexed from 2 because we dont want the instance name and gold standard for now
                    for (int i = 2; i < words.Length; i++)
                    {
                        if (words[i].Contains("curW="))
                        {
                            curWord = words[i];
                            word = curWord.Substring(curWord.IndexOf("=")+1);
                        }
                        //TODO:Check if feature Value is zero
                        if (words[i].Trim() !="1")
                            Features.Add(words[i]);
                    }

                    curWord = curWord.Trim();
                    //this is for storign previous tags
                    List<string> AddFeatures = new List<string>();
                    List<String> ClassList = new List<string>();

                    foreach (var nd in Parent)
                    {
                        AddFeatures.Clear();
                        prevT = nd.tag;
                        if (nd.PrevNode != null)
                            prev2Tag = nd.PrevNode.tag;
                        else
                            prev2Tag = "BOS";

                        AddFeatures.Add("prevT=" + prevT);
                        AddFeatures.Add("prevTwoTags=" + prev2Tag + "+" + prevT);
                        //this loop handles topN condition
                        List<Node> CandForTopN = new List<Node>();
                        double normalizerPerParent = 0;
                        foreach (var classLabel in TagList)
                        {
                            score = 0;
                            var ClassLambda = ClassFeatureDict[classLabel];

                            //we are goign to get the value for this path
                            foreach (var feat in Features)
                            {
                                if (ClassLambda.ContainsKey(feat))
                                {
                                    score += ClassLambda[feat];
                                }

                            }
                            // this is to account for prev tags
                            foreach (var feat in AddFeatures)
                            {
                                if (ClassLambda.ContainsKey(feat))
                                    score += ClassLambda[feat];
                            }
                            score += ClassLambda["<default>"];
                            score = System.Math.Exp(score);

                            normalizerPerParent += score;
                            //we will update the pathScore later
                            Node Cand = new Node(word, classLabel, score,0,nd);
                            CandForTopN.Add(Cand);
                        }
                        CandForTopN = CandForTopN.OrderByDescending(x => x.score).Take(TopN).ToList();
                        foreach (var cand in CandForTopN)
                        {
                            cand.score /= normalizerPerParent;
                        }

                        foreach (var TopNNode in CandForTopN)
                        {
                            CurCandidates.Add(TopNNode);
                        }
                    }

                    foreach (var cd in CurCandidates)
                    {
                        //cd.score = cd.score / totalScoreAcrossAllPaths;
                        cd.PathScore = System.Math.Log10(cd.score) + (cd.PrevNode.PathScore);
                        //this will help in pruning by beam size
                        if (cd.PathScore > maxScore)
                            maxScore = cd.PathScore;

                    }

                    //update parents for the next word
                    Parent.Clear();
                    //Order by the whole path score and just take the topK candidate. We will prune further with beam.
                    CurCandidates = CurCandidates.OrderByDescending(x => x.PathScore).Take(TopK).ToList();

                    foreach (var cd in CurCandidates)
                    {

                        if(cd.PathScore == maxScore)
                        {
                            Sw.WriteLine(words[0]+" "+ words[1] +" " +cd.tag+" "+cd.score);
                            if (words[1] == cd.tag)
                                Correct++;
                        }

                        if (cd.PathScore + BeamSize >= maxScore)
                            Parent.Add(cd);
                        else
                            break;
                    }

                    curWordNum++;

                }
            }
            stopwatch.Stop();
            Console.WriteLine("Time elapsed: {0}", stopwatch.Elapsed);
            Console.WriteLine("Accuracy : " + Convert.ToString(Correct/totalLines));
            Sw.Close();
            Console.ReadLine();
        }