Example #1
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            SingleChoiceWithSubParams access = param.GetSingleChoiceWithSubParams("Matrix access");
            bool rows = access.Value == 0;
            int groupInd;
            if (rows){
                groupInd = access.GetSubParameters().GetSingleChoiceParam("Grouping").Value - 1;
            } else{
                groupInd = -1;
            }
            int what = param.GetSingleChoiceParam("Subtract what").Value;
            if (groupInd < 0){
                SubtractValues(rows, GetFunc(what), mdata, processInfo.NumThreads);
            } else{
                string[][] catRow = mdata.GetCategoryRowAt(groupInd);
                foreach (string[] t in catRow){
                    if (t.Length > 1){
                        processInfo.ErrString = "The groups are overlapping.";
                        return;
                    }
                }
                SubtractGroups(mdata, catRow, GetFunc(what));
            }
        }
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            SingleChoiceWithSubParams scwsp = param.GetSingleChoiceWithSubParams("Action");
            Parameters spar = scwsp.GetSubParameters();
            switch (scwsp.Value){
                case 0:
                    ProcessDataCreate(mdata, spar);
                    break;
                case 1:
                    ProcessDataEdit(mdata, spar);
                    break;
                case 2:
                    ProcessDataRename(mdata, spar);
                    break;
                case 3:
                    ProcessDataDelete(mdata, spar);
                    break;
            }
        }
 private static void ProcessDataEdit(IMatrixData mdata, Parameters param)
 {
     SingleChoiceWithSubParams s = param.GetSingleChoiceWithSubParams("Numerical row");
     int groupColInd = s.Value;
     Parameters sp = s.GetSubParameters();
     for (int i = 0; i < mdata.ExpressionColumnCount; i++){
         string t = mdata.ExpressionColumnNames[i];
         double x = sp.GetDoubleParam(t).Value;
         mdata.NumericRows[groupColInd][i] = x;
     }
 }
Example #4
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int[] outputColumns = param.GetMultiChoiceParam("Output").Value;
            int proteinIdColumnInd = param.GetSingleChoiceParam("Protein IDs").Value;
            string[] proteinIds = mdata.StringColumns[proteinIdColumnInd];
            int[] intensityCols = param.GetMultiChoiceParam("Intensities").Value;
            if (intensityCols.Length == 0){
                processInfo.ErrString = "Please select at least one column containing protein intensities.";
                return;
            }
            // variable to hold all intensity values
            List<double[]> columns = new List<double[]>();
            string[] sampleNames = new string[intensityCols.Length];
            for (int col = 0; col < intensityCols.Length; col++){
                double[] values;
                if (intensityCols[col] < mdata.ExpressionColumnCount){
                    values = ArrayUtils.ToDoubles(mdata.GetExpressionColumn(intensityCols[col]));
                    sampleNames[col] = mdata.ExpressionColumnNames[intensityCols[col]];
                } else{
                    values = mdata.NumericColumns[intensityCols[col] - mdata.ExpressionColumnCount];
                    sampleNames[col] = mdata.NumericColumnNames[intensityCols[col] - mdata.ExpressionColumnCount];
                }
                sampleNames[col] = new Regex(@"^(?:(?:LFQ )?[Ii]ntensity )?(.*)$").Match(sampleNames[col]).Groups[1].Value;
                columns.Add(values);
            }
            // average over columns if this option is selected
            if (param.GetSingleChoiceWithSubParams("Averaging mode").Value == 3){
                double[] column = new double[mdata.RowCount];
                for (int row = 0; row < mdata.RowCount; row++){
                    double[] values = new double[intensityCols.Length];
                    for (int col = 0; col < intensityCols.Length; col++){
                        values[col] = columns[col][row];
                    }
                    column[row] = ArrayUtils.Median(ExtractValidValues(values, false));
                }
                // delete the original list of columns
                columns = new List<double[]>{column};
                sampleNames = new[]{""};
            }
            // revert logarithm if necessary
            if (param.GetBoolWithSubParams("Logarithmized").Value){
                double[] logBases = new[]{2, Math.E, 10};
                double logBase =
                    logBases[param.GetBoolWithSubParams("Logarithmized").GetSubParameters().GetSingleChoiceParam("log base").Value];
                foreach (double[] t in columns){
                    for (int row = 0; row < mdata.RowCount; row++){
                        if (t[row] == 0){
                            processInfo.ErrString = "Are the columns really logarithmized?\nThey contain zeroes!";
                        }
                        t[row] = Math.Pow(logBase, t[row]);
                    }
                }
            }
            double[] mw = mdata.NumericColumns[param.GetSingleChoiceParam("Molecular masses").Value];
            // detect whether the molecular masses are given in Da or kDa
            if (ArrayUtils.Median(mw) < 250) // likely kDa
            {
                for (int i = 0; i < mw.Length; i++){
                    mw[i] *= 1000;
                }
            }
            double[] detectabilityNormFactor = mw;
            if (param.GetBoolWithSubParams("Detectability correction").Value){
                detectabilityNormFactor =
                    mdata.NumericColumns[
                        param.GetBoolWithSubParams("Detectability correction")
                             .GetSubParameters()
                             .GetSingleChoiceParam("Correction factor")
                             .Value];
            }
            // the normalization factor needs to be nonzero for all proteins
            // check and replace with 1 for all relevant cases
            for (int row = 0; row < mdata.RowCount; row++){
                if (detectabilityNormFactor[row] == 0 || detectabilityNormFactor[row] == double.NaN){
                    detectabilityNormFactor[row] = 1;
                }
            }
            // detect the organism
            Organism organism = DetectOrganism(proteinIds);
            // c value the amount of DNA per cell, see: http://en.wikipedia.org/wiki/C-value
            double cValue = (organism.genomeSize*basePairWeight)/avogadro;
            // find the histones
            int[] histoneRows = FindHistones(proteinIds, organism);
            // write a categorical column indicating the histones
            string[][] histoneCol = new string[mdata.RowCount][];
            for (int row = 0; row < mdata.RowCount; row++){
                histoneCol[row] = (ArrayUtils.Contains(histoneRows, row)) ? new[]{"+"} : new[]{""};
            }
            mdata.AddCategoryColumn("Histones", "", histoneCol);
            // initialize the variables for the annotation rows
            double[] totalProteinRow = new double[mdata.ExpressionColumnCount];
            double[] totalMoleculesRow = new double[mdata.ExpressionColumnCount];
            string[][] organismRow = new string[mdata.ExpressionColumnCount][];
            double[] histoneMassRow = new double[mdata.ExpressionColumnCount];
            double[] ploidyRow = new double[mdata.ExpressionColumnCount];
            double[] cellVolumeRow = new double[mdata.ExpressionColumnCount];
            double[] normalizationFactors = new double[columns.Count];
            // calculate normalization factors for each column
            for (int col = 0; col < columns.Count; col++){
                string sampleName = sampleNames[col];
                double[] column = columns[col];
                // normalization factor to go from intensities to copies,
                // needs to be determined either using the total protein or the histone scaling approach
                double factor;
                switch (param.GetSingleChoiceWithSubParams("Scaling mode").Value){
                    case 0: // total protein amount
                        double mwWeightedNormalizedSummedIntensities = 0;
                        for (int row = 0; row < mdata.RowCount; row++){
                            if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
                                mwWeightedNormalizedSummedIntensities += (column[row]/detectabilityNormFactor[row])*mw[row];
                            }
                        }
                        factor =
                            (param.GetSingleChoiceWithSubParams("Scaling mode")
                                  .GetSubParameters()
                                  .GetDoubleParam("Protein amount per cell [pg]")
                                  .Value*1e-12*avogadro)/mwWeightedNormalizedSummedIntensities;
                        break;
                    case 1: // histone mode
                        double mwWeightedNormalizedSummedHistoneIntensities = 0;
                        foreach (int row in histoneRows){
                            if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
                                mwWeightedNormalizedSummedHistoneIntensities += (column[row]/detectabilityNormFactor[row])*mw[row];
                            }
                        }
                        double ploidy =
                            param.GetSingleChoiceWithSubParams("Scaling mode").GetSubParameters().GetDoubleParam("Ploidy").Value;
                        factor = (cValue*ploidy*avogadro)/mwWeightedNormalizedSummedHistoneIntensities;
                        break;
                    default:
                        factor = 1;
                        break;
                }
                normalizationFactors[col] = factor;
            }
            // check averaging mode
            if (param.GetSingleChoiceWithSubParams("Averaging mode").Value == 1) // same factor for all
            {
                double factor = ArrayUtils.Mean(normalizationFactors);
                for (int i = 0; i < normalizationFactors.Length; i++){
                    normalizationFactors[i] = factor;
                }
            }
            if (param.GetSingleChoiceWithSubParams("Averaging mode").Value == 2) // same factor in each group
            {
                if (
                    param.GetSingleChoiceWithSubParams("Averaging mode").GetSubParameters().GetSingleChoiceParam("Grouping").Value ==
                        -1){
                    processInfo.ErrString = "No grouping selected.";
                    return;
                }
                string[][] groupNames =
                    mdata.GetCategoryRowAt(
                        param.GetSingleChoiceWithSubParams("Averaging mode").GetSubParameters().GetSingleChoiceParam("Grouping").Value);
                string[] uniqueGroupNames = Unique(groupNames);
                int[] grouping = new int[columns.Count];
                for (int i = 0; i < columns.Count; i++){
                    if (intensityCols[i] >= mdata.ExpressionColumnCount){ // Numeric annotation columns cannot be grouped
                        grouping[i] = i;
                        continue;
                    }
                    if (ArrayUtils.Contains(uniqueGroupNames, groupNames[i][0])){
                        grouping[i] = ArrayUtils.IndexOf(uniqueGroupNames, groupNames[i][0]);
                        continue;
                    }
                    grouping[i] = i;
                }
                Dictionary<int, List<double>> factors = new Dictionary<int, List<double>>();
                for (int i = 0; i < columns.Count; i++){
                    if (factors.ContainsKey(grouping[i])){
                        factors[grouping[i]].Add(normalizationFactors[i]);
                    } else{
                        factors.Add(grouping[i], new List<double>{normalizationFactors[i]});
                    }
                }
                double[] averagedNormalizationFactors = new double[columns.Count];
                for (int i = 0; i < columns.Count; i++){
                    List<double> factor;
                    factors.TryGetValue(grouping[i], out factor);
                    averagedNormalizationFactors[i] = ArrayUtils.Mean(factor);
                }
                normalizationFactors = averagedNormalizationFactors;
            }
            // loop over all selected columns and calculate copy numbers
            for (int col = 0; col < columns.Count; col++){
                string sampleName = sampleNames[col];
                double[] column = columns[col];
                double factor = normalizationFactors[col];
                double[] copyNumbers = new double[mdata.RowCount];
                double[] concentrations = new double[mdata.RowCount]; // femtoliters
                double[] massFraction = new double[mdata.RowCount];
                double[] moleFraction = new double[mdata.RowCount];
                double totalProtein = 0; // picograms
                double histoneMass = 0; // picograms
                double totalMolecules = 0;
                for (int row = 0; row < mdata.RowCount; row++){
                    if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
                        copyNumbers[row] = (column[row]/detectabilityNormFactor[row])*factor;
                        totalMolecules += copyNumbers[row];
                        totalProtein += (copyNumbers[row]*mw[row]*1e12)/avogadro; // picograms
                        if (ArrayUtils.Contains(histoneRows, row)){
                            histoneMass += (copyNumbers[row]*mw[row]*1e12)/avogadro; // picograms
                        }
                    }
                }
                double totalVolume = (totalProtein/(param.GetDoubleParam("Total cellular protein concentration [g/l]").Value))*1000;
                // femtoliters
                for (int row = 0; row < mdata.RowCount; row++){
                    if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
                        concentrations[row] = ((copyNumbers[row]/(totalVolume*1e-15))/avogadro)*1e9; // nanomolar
                        massFraction[row] = (((copyNumbers[row]*mw[row]*1e12)/avogadro)/totalProtein)*1e6; // ppm
                        moleFraction[row] = (copyNumbers[row]/totalMolecules)*1e6; // ppm
                    }
                }
                string suffix = (sampleName == "") ? "" : " " + sampleName;
                if (ArrayUtils.Contains(outputColumns, 0)){
                    mdata.AddNumericColumn("Copy number" + suffix, "", copyNumbers);
                }
                if (ArrayUtils.Contains(outputColumns, 1)){
                    mdata.AddNumericColumn("Concentration [nM]" + suffix, "", concentrations);
                }
                if (ArrayUtils.Contains(outputColumns, 2)){
                    mdata.AddNumericColumn("Abundance (mass/total mass) [*10^-6]" + suffix, "", massFraction);
                }
                if (ArrayUtils.Contains(outputColumns, 3)){
                    mdata.AddNumericColumn("Abundance (molecules/total molecules) [*10^-6]" + suffix, "", moleFraction);
                }
                double[] rank = ArrayUtils.Rank(copyNumbers);
                double[] relativeRank = new double[mdata.RowCount];
                double validRanks = mdata.RowCount;
                for (int row = 0; row < mdata.RowCount; row++){
                    // remove rank for protein with no copy number information
                    if (double.IsNaN((copyNumbers[row])) || copyNumbers[row] == 0){
                        rank[row] = double.NaN;
                        validRanks--; // do not consider as valid
                    }
                    // invert ranking, so that rank 0 is the most abundant protein
                    rank[row] = mdata.RowCount - rank[row];
                }
                for (int row = 0; row < mdata.RowCount; row++){
                    relativeRank[row] = rank[row]/validRanks;
                }
                if (ArrayUtils.Contains(outputColumns, 4)){
                    mdata.AddNumericColumn("Copy number rank" + suffix, "", rank);
                }
                if (ArrayUtils.Contains(outputColumns, 5)){
                    mdata.AddNumericColumn("Relative copy number rank" + suffix, "", relativeRank);
                }
                if (intensityCols[col] < mdata.ExpressionColumnCount &&
                    param.GetSingleChoiceWithSubParams("Averaging mode").Value != 3){
                    totalProteinRow[intensityCols[col]] = Math.Round(totalProtein, 2);
                    totalMoleculesRow[intensityCols[col]] = Math.Round(totalMolecules, 0);
                    organismRow[intensityCols[col]] = new string[]{organism.name};
                    histoneMassRow[intensityCols[col]] = Math.Round(histoneMass, 4);
                    ploidyRow[intensityCols[col]] = Math.Round((histoneMass*1e-12)/cValue, 2);
                    cellVolumeRow[intensityCols[col]] = Math.Round(totalVolume, 2); // femtoliters
                }
            }
            if (param.GetSingleChoiceWithSubParams("Averaging mode").Value != 3 && ArrayUtils.Contains(outputColumns, 6)){
                mdata.AddNumericRow("Total protein [pg/cell]", "", totalProteinRow);
                mdata.AddNumericRow("Total molecules per cell", "", totalMoleculesRow);
                mdata.AddCategoryRow("Organism", "", organismRow);
                mdata.AddNumericRow("Histone mass [pg/cell]", "", histoneMassRow);
                mdata.AddNumericRow("Ploidy", "", ploidyRow);
                mdata.AddNumericRow("Cell volume [fl]", "", cellVolumeRow);
            }
        }
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            SingleChoiceWithSubParams xp = param.GetSingleChoiceWithSubParams("Expression column selection");
            bool groups = xp.Value == 2;
            string[] groupNames = null;
            int[][] colIndsGroups = null;
            if (groups){
                int groupRowInd = xp.GetSubParameters().GetSingleChoiceParam("Group").Value;
                string[][] groupCol = mdata.GetCategoryRowAt(groupRowInd);
                groupNames = ArrayUtils.UniqueValuesPreserveOrder(groupCol);
                colIndsGroups = PerseusPluginUtils.GetExpressionColIndices(groupCol, groupNames);
            }
            int[] useCols = xp.Value == 1
                ? xp.GetSubParameters().GetMultiChoiceParam("Columns").Value
                : ArrayUtils.ConsecutiveInts(mdata.ExpressionColumnCount);
            HashSet<int> w = ArrayUtils.ToHashSet(param.GetMultiChoiceParam("Calculate").Value);
            bool[] include = new bool[procs.Length];
            double[][] columns = new double[procs.Length][];
            double[][][] columnsG = null;
            if (groups){
                columnsG = new double[procs.Length][][];
                for (int i = 0; i < columnsG.Length; i++){
                    columnsG[i] = new double[groupNames.Length][];
                }
            }
            for (int i = 0; i < include.Length; i++){
                include[i] = w.Contains(i);
                if (include[i]){
                    columns[i] = new double[mdata.RowCount];
                    if (groups){
                        for (int j = 0; j < groupNames.Length; j++){
                            columnsG[i][j] = new double[mdata.RowCount];
                        }
                    }
                }
            }
            for (int i = 0; i < mdata.RowCount; i++){
                List<double> v = new List<double>();
                foreach (int j in useCols){
                    double x = mdata[i, j];
                    if (!double.IsNaN(x) && !double.IsInfinity(x)){
                        v.Add(x);
                    }
                }
                for (int j = 0; j < include.Length; j++){
                    if (include[j]){
                        columns[j][i] = procs[j].Item2(v);
                    }
                }
                if (groups){
                    List<double>[] vg = new List<double>[groupNames.Length];
                    for (int j = 0; j < colIndsGroups.Length; j++){
                        vg[j] = new List<double>();
                        for (int k = 0; k < colIndsGroups[j].Length; k++){
                            double x = mdata[i, colIndsGroups[j][k]];
                            if (!double.IsNaN(x) && !double.IsInfinity(x)){
                                vg[j].Add(x);
                            }
                        }
                    }
                    for (int j = 0; j < include.Length; j++){
                        if (include[j]){
                            for (int k = 0; k < groupNames.Length; k++){
                                columnsG[j][k][i] = procs[j].Item2(vg[k]);
                            }
                        }
                    }
                }
            }
            for (int i = 0; i < include.Length; i++){
                if (include[i]){
                    mdata.AddNumericColumn(procs[i].Item1, procs[i].Item3, columns[i]);
                    if (groups){
                        for (int k = 0; k < groupNames.Length; k++){
                            mdata.AddNumericColumn(procs[i].Item1 + " " + groupNames[k], procs[i].Item3, columnsG[i][k]);
                        }
                    }
                }
            }
        }
 private static void ProcessDataCreateFromGoupNames(IMatrixData mdata, Parameters param, ProcessInfo processInfo)
 {
     SingleChoiceWithSubParams scwsp = param.GetSingleChoiceWithSubParams("Pattern");
     Parameters spar = scwsp.GetSubParameters();
     string regexString = "";
     string replacement = "";
     switch (scwsp.Value) {
         case 0:
         case 1:
         case 2:
             regexString = GetSelectableRegexes()[scwsp.Value][1];
             break;
         case 3:
             regexString = spar.GetStringParam("Regex").Value;
             break;
         case 4:
             regexString = spar.GetStringParam("Regex").Value;
             replacement = spar.GetStringParam("Replace with").Value;
             break;
         default:
             break;
     }
     Regex regex;
     try{
         regex = new Regex(regexString);
     }
     catch (ArgumentException){
         processInfo.ErrString = "The regular expression you provided has invalid syntax.";
         return;
     }
     List<string[]> groupNames = new List<string[]>();
     foreach (string sampleName in mdata.ExpressionColumnNames) {
         string groupName = scwsp.Value < 4 ? regex.Match(sampleName).Groups[1].Value : regex.Replace(sampleName, replacement);
         if (string.IsNullOrEmpty(groupName))
             groupName = sampleName;
         groupNames.Add(new[] { groupName });
     }
     mdata.AddCategoryRow("Grouping", "", groupNames.ToArray());
 }
 private static void ProcessDataEdit(IMatrixData mdata, Parameters param)
 {
     SingleChoiceWithSubParams s = param.GetSingleChoiceWithSubParams("Category row");
     int groupColInd = s.Value;
     Parameters sp = s.GetSubParameters();
     string[][] newRow = new string[mdata.ExpressionColumnCount][];
     for (int i = 0; i < mdata.ExpressionColumnCount; i++){
         string t = mdata.ExpressionColumnNames[i];
         string x = sp.GetStringParam(t).Value;
         newRow[i] = x.Length > 0 ? x.Split(';') : new string[0];
     }
     mdata.SetCategoryRowAt(newRow, groupColInd);
 }
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            const bool rows = false;
            int minValids = param.GetIntParam("Min. number of values").Value;
            SingleChoiceWithSubParams modeParam = param.GetSingleChoiceWithSubParams("Mode");
            int modeInd = modeParam.Value;
            if (modeInd != 0 && mdata.CategoryRowNames.Count == 0){
                processInfo.ErrString = "No grouping is defined.";
                return;
            }
            if (modeInd != 0){
                processInfo.ErrString = "Group-wise filtering can only be appled to rows.";
                return;
            }
            SingleChoiceWithSubParams x = param.GetSingleChoiceWithSubParams("Values should be");
            Parameters subParams = x.GetSubParameters();
            int shouldBeIndex = x.Value;
            FilteringMode filterMode;
            double threshold = double.NaN;
            double threshold2 = double.NaN;
            switch (shouldBeIndex){
                case 0:
                    filterMode = FilteringMode.Valid;
                    break;
                case 1:
                    filterMode = FilteringMode.GreaterThan;
                    threshold = subParams.GetDoubleParam("Minimum").Value;
                    break;
                case 2:
                    filterMode = FilteringMode.GreaterEqualThan;
                    threshold = subParams.GetDoubleParam("Minimum").Value;
                    break;
                case 3:
                    filterMode = FilteringMode.LessThan;
                    threshold = subParams.GetDoubleParam("Maximum").Value;
                    break;
                case 4:
                    filterMode = FilteringMode.LessEqualThan;
                    threshold = subParams.GetDoubleParam("Maximum").Value;
                    break;
                case 5:
                    filterMode = FilteringMode.Between;
                    threshold = subParams.GetDoubleParam("Minimum").Value;
                    threshold2 = subParams.GetDoubleParam("Maximum").Value;
                    break;
                case 6:
                    filterMode = FilteringMode.Outside;
                    threshold = subParams.GetDoubleParam("Minimum").Value;
                    threshold2 = subParams.GetDoubleParam("Maximum").Value;
                    break;
                default:
                    throw new Exception("Should not happen.");
            }
            if (modeInd != 0){
                int gind = modeParam.GetSubParameters().GetSingleChoiceParam("Grouping").Value;
                string[][] groupCol = mdata.GetCategoryRowAt(gind);
                NonzeroFilterGroup(minValids, mdata, param, modeInd == 2, threshold, threshold2, filterMode, groupCol);
            } else{
                NonzeroFilter1(rows, minValids, mdata, param, threshold, threshold2, filterMode);
            }
        }
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            SingleChoiceWithSubParams scwsp = param.GetSingleChoiceWithSubParams("Action");
            Parameters spar = scwsp.GetSubParameters();
            switch (scwsp.Value){
                case 0:
                    ProcessDataCreate(mdata, spar);
                    break;
                case 1:
                    ProcessDataCreateFromGoupNames(mdata, spar, processInfo);
                    break;
                case 2:
                    ProcessDataEdit(mdata, spar);
                    break;
                case 3:
                    ProcessDataRename(mdata, spar);
                    break;
                case 4:
                    ProcessDataDelete(mdata, spar);
                    break;
                case 5:
                    ProcessDataWriteTemplateFile(mdata, spar);
                    break;
                case 6:
                    string err = ProcessDataReadFromFile(mdata, spar);
                    if (err != null){
                        processInfo.ErrString = err;
                    }
                    break;
            }
        }
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            SingleChoiceWithSubParams p = param.GetSingleChoiceWithSubParams("Row");
            int colInd = p.Value;
            if (colInd < 0) {
                processInfo.ErrString = "No categorical rows available.";
                return;
            }
            MultiChoiceParam mcp = p.GetSubParameters().GetMultiChoiceParam("Values");
            int[] inds = mcp.Value;
            if (inds.Length < 1) {
                processInfo.ErrString = "Please select at least two terms for merging.";
                return;
            }
            string newTerm = param.GetStringParam("New term").Value;
            if (newTerm.Length == 0){
                processInfo.ErrString = "Please specify a new term.";
                return;
            }

            string[] values = new string[inds.Length];
            for (int i = 0; i < values.Length; i++) {
                values[i] = mdata.GetCategoryRowValuesAt(colInd)[inds[i]];
            }
            HashSet<string> value = new HashSet<string>(values);
            string[][] cats = mdata.GetCategoryRowAt(colInd);
            string[][] newCat = new string[cats.Length][];
            for (int i = 0; i < cats.Length; i++){
                string[] w = cats[i];
                bool changed = false;
                for (int j = 0; j < w.Length; j++){
                    if (value.Contains(w[j])){
                        w[j] = newTerm;
                        changed = true;
                    }
                }
                if (changed){
                    Array.Sort(w);
                }
                newCat[i] = w;
            }
            mdata.SetCategoryRowAt(newCat, colInd);
        }
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     bool rows = param.GetSingleChoiceParam("Matrix access").Value == 0;
     bool atLeast = param.GetSingleChoiceParam("Side").Value == 0;
     int numValids = param.GetIntParam("Number of valid values").Value;
     SingleChoiceWithSubParams modeParam = param.GetSingleChoiceWithSubParams("Mode");
     int modeInd = modeParam.Value;
     if (modeInd != 0 && mdata.CategoryRowNames.Count == 0){
         processInfo.ErrString = "No grouping is defined.";
         return;
     }
     if (modeInd != 0 && !rows){
         processInfo.ErrString = "Group-wise filtering can only be appled to rows.";
         return;
     }
     if (modeInd != 0){
         int gind = modeParam.GetSubParameters().GetSingleChoiceParam("Grouping").Value;
         string[][] groupCol = mdata.CategoryRows[gind];
         ValidValueFilterGroup(numValids, mdata, param, modeInd == 2, groupCol, atLeast);
     } else{
         ValidValueFilter1(rows, numValids, mdata, param, atLeast);
     }
 }
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     SingleChoiceWithSubParams sp = param.GetSingleChoiceWithSubParams("Source type");
     Parameters subParams = sp.GetSubParameters();
     int[] colInds = subParams.GetMultiChoiceParam("Columns").Value;
     int which = subParams.GetSingleChoiceParam("Target type").Value;
     switch (sp.Value){
         case 0:
             ExpressionToNumeric(colInds, mdata);
             break;
         case 1:
             if (which == 0){
                 NumericToCategorical(colInds, mdata);
             } else{
                 NumericToExpression(colInds, mdata);
             }
             break;
         case 2:
             if (which == 0){
                 CategoricalToNumeric(colInds, mdata);
             } else{
                 CategoricalToString(colInds, mdata);
             }
             break;
         case 3:
             StringToCategorical(colInds, mdata);
             break;
         default:
             throw new Exception("Never get here");
     }
 }
Example #13
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     SingleChoiceWithSubParams access = param.GetSingleChoiceWithSubParams("Matrix access");
     bool rows = access.Value == 0;
     int groupInd;
     if (rows){
         groupInd = access.GetSubParameters().GetSingleChoiceParam("Grouping").Value - 1;
     } else{
         groupInd = -1;
     }
     if (groupInd < 0){
         Zscore(rows, mdata);
     } else{
         string[][] catRow = mdata.CategoryRows[groupInd];
         foreach (string[] t in catRow){
             if (t.Length > 1){
                 processInfo.ErrString = "The groups are overlapping.";
                 return;
             }
         }
         ZscoreGroups(mdata, catRow);
     }
 }
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            SingleChoiceWithSubParams p = param.GetSingleChoiceWithSubParams("Row");
            int colInd = p.Value;
            if (colInd < 0){
                processInfo.ErrString = "No categorical rows available.";
                return;
            }
            MultiChoiceParam mcp = p.GetSubParameters().GetMultiChoiceParam("Values");
            int[] inds = mcp.Value;
            if (inds.Length == 0){
                processInfo.ErrString = "Please select at least one term for filtering.";
                return;
            }
            string[] values = new string[inds.Length];
            for (int i = 0; i < values.Length; i++){
                values[i] = mdata.GetCategoryRowValuesAt(colInd)[inds[i]];
            }
            HashSet<string> value = new HashSet<string>(values);
            bool remove = param.GetSingleChoiceParam("Mode").Value == 0;
            string[][] cats = mdata.GetCategoryRowAt(colInd);
            List<int> valids = new List<int>();
            for (int i = 0; i < cats.Length; i++){
                bool valid = true;
                foreach (string w in cats[i]){
                    if (value.Contains(w)){
                        valid = false;
                        break;
                    }
                }
                if ((valid && remove) || (!valid && !remove)){
                    valids.Add(i);
                }
            }
            PerseusPluginUtils.FilterColumns(mdata, param, valids.ToArray());
        }