Example #1
0
        public static Model ValidateModel(Model model)
        {
            // validate, model contains no broken links
            var brokenLinks = ModelAnalyzer.FindBrokenLinks(model);

            if (brokenLinks.Length > 0)
            {
                D.LogWarning($"Model contains {brokenLinks.Length} broken links: {string.Join(",", brokenLinks)}");
            }

            // validate, all model outputs are unique
            // https://stackoverflow.com/questions/18547354/c-sharp-linq-find-duplicates-in-list
            var duplicateOutputs = model.outputs.GroupBy(x => x)
                                   .Where(g => g.Count() > 1)
                                   .Select(y => y.Key);

            foreach (var o in duplicateOutputs)
            {
                D.LogWarning($"Output is specified more than once in the model: {o}");
            }

            // validate, model contains no unconnected layers
            var unconnectedOutputs = ModelAnalyzer.FindUnconnectedOutputs(model);

            foreach (var o in unconnectedOutputs)
            {
                D.LogWarning($"Layer is specified as output, but is missing in the model: {o}");
            }

            return(model);
        }
        private Model ConvertOnnxModel(ModelProto onnxModel)
        {
            var model        = new Model();
            var modelBuilder = new ModelBuilder(model);

            // Convert graph inputs & outputs
            var initializersByName = onnxModel.Graph.Initializer.ToDictionary(i => i.Name, i => true);

            foreach (ValueInfoProto i in onnxModel.Graph.Input)
            {
                // skip input tensors that have initializer data, they are constant tensors not global inputs
                if (initializersByName.ContainsKey(i.Name))
                {
                    continue;
                }

                if (m_OverrideGlobalInputs.ContainsKey(i.Name))
                {
                    Const(i.Name, m_OverrideGlobalInputs[i.Name]);
                    continue;
                }

                modelBuilder.Input(i.Name, ONNXLayout.ConvertSymbolicShapeToBarracuda(i.Type.TensorType.Shape, onnxLayout: "NCHW"));
                Output(i.Name, onnxShape: i.Type.TensorType.Shape.Dim.Select(d => d.DimValue).ToArray(), onnxLayout: "NCHW");
            }
            foreach (ValueInfoProto o in onnxModel.Graph.Output)
            {
                modelBuilder.Output(o.Name);
            }

            // TODO: process model (recurrent nodes) memories

            // Read constants from initializer list
            foreach (TensorProto initializer in onnxModel.Graph.Initializer)
            {
                Const(initializer.Name, new ONNXTensor(initializer));
            }

            // Convert graph nodes
            foreach (NodeProto onnxNode in onnxModel.Graph.Node)
            {
                var node   = new ONNXNodeWrapper(onnxNode, m_ModelTensors, model.Warnings);
                var nodeId = node.Name;
                var opType = node.OperatorType;

                Output(node);

                bool injectDummy = false;
                if (m_NodeImporters.ContainsKey(opType))
                {
                    try
                    {
                        if (node.AreAllInputsConst && !m_ShouldNotBeBaked.Contains(opType))
                        {
                            Profiler.BeginSample($"Bake {opType} {node.Name}");
                            var bakedTensor = BakeNodeIntoConstant(m_NodeImporters[opType], node);
                            Const(node.Name, bakedTensor);
                            var printTensor = bakedTensor.ToBarracuda("NCHW");
                            D.Log($"Baked node {nodeId} into constant of shape {printTensor.shape} and values: {printTensor.DataToString()}");
                            Profiler.EndSample();
                        }
                        else
                        {
                            Profiler.BeginSample($"Import {opType} {node.Name}");
                            m_NodeImporters[opType](modelBuilder, node);
                            Profiler.EndSample();
                        }
                    }
                    catch (Exception e)
                    {
                        // We support the layer but something went wrong while importing it
                        // We log the problem and insert an identity layer
                        string message = $"Unexpected error while parsing layer {nodeId} of type {opType}.\n{e.Message}\n\nJson: {onnxNode}\n{e.StackTrace}\n";
                        Warn(model, nodeId, message);
                        injectDummy = true;
                    }
                }
                else
                {
                    //We don't support this type of layer
                    //We log the problem and insert an identity layer
                    string message = $"Unknown type encountered while parsing layer {nodeId} of type {opType}. We replace by an identity layer.";
                    Warn(model, nodeId, message);
                    injectDummy = true;
                }

                if (injectDummy)
                {
                    var originalLayerHadInputs = (node.InputCount > 0);
                    if (originalLayerHadInputs)
                    {
                        modelBuilder.Identity(nodeId, node.Input0);
                    }
                    else // if errorneous layer had no inputs, inject dummy constant which does not require any inputs
                    {
                        modelBuilder.Const(nodeId, new Tensor());
                    }
                }

                m_ModelTensors.CompleteUninitializedFields(node);
            }

            // Convert constant tensors
            int insertionIndex = 0;

            foreach (var entry in constantTensors)
            {
                modelBuilder.Const(entry.Key, entry.Value.ToBarracuda(onnxLayout: "CONST"),
                                   insertionIndex++);
            }

            // Model should not contain any broken links in the end
            var unconnectedInputs = ModelAnalyzer.FindBrokenLinks(model);

            Debug.Assert(unconnectedInputs.Length == 0);
            if (unconnectedInputs.Length > 0)
            {
                var message = $"Broken links: {string.Join(", ", unconnectedInputs)}";
                Warn(model, "", message);
            }

            // Parse meta data
            var irVersion = onnxModel.IrVersion; // legacy

            if (onnxModel.OpsetImport?.Count > 0)
            {
                irVersion = onnxModel.OpsetImport[0].Version;
            }
            model.ProducerName = $"{onnxModel.ProducerName} v{onnxModel.ProducerVersion}";
            model.IrSource     = "ONNX";
            model.IrVersion    = $"{irVersion}";

            // strip :0 at the end of string name for TF import
            if (patchRemoveTrailingTFExportCharacters)
            {
                model.inputs = model.inputs.Select(i => { i.name = i.name.EndsWith(":0") ? i.name.Remove(i.name.Length - 2) : i.name;
                                                          return(i); }).ToList();
                model.outputs = model.outputs.Select(o => { o = o.EndsWith(":0") ? o.Remove(o.Length - 2) : o;
                                                            return(o); }).ToList();
                model.memories = model.memories.Select(m => { m.input  = m.input.EndsWith(":0")  ? m.input.Remove(m.input.Length - 2)   : m.input;
                                                              m.output = m.output.EndsWith(":0") ? m.output.Remove(m.output.Length - 2) : m.output;
                                                              return(m); }).ToList();
                model.layers = model.layers.Select(l => { l.name = l.name.EndsWith(":0") ? l.name.Remove(l.name.Length - 2) : l.name;
                                                          for (int i = 0; i < l.datasets.Length; i++)
                                                          {
                                                              l.datasets[i].name = l.datasets[i].name.EndsWith(":0") ? l.datasets[i].name.Remove(l.datasets[i].name.Length - 2) : l.datasets[i].name;
                                                          }
                                                          for (int i = 0; i < l.inputs.Length; i++)
                                                          {
                                                              l.inputs[i] = l.inputs[i].EndsWith(":0") ? l.inputs[i].Remove(l.inputs[i].Length - 2) : l.inputs[i];
                                                          }
                                                          return(l); }).ToList();
            }

            return(model);
        }