Example #1
0
        // ---------------------------------------------------------------------------------

        protected ComputeKernel BestKernel(ComputeKernelLibrary.Entry[] entrees)
        {
            return(ComputeKernel.BestKernel(m_Kernels, entrees, m_Verbose));
        }
Example #2
0
        public virtual void PrepareModel(Model model, IDictionary <string, TensorShape> inputShapes)
        {
            var modelHash = CalcModelWithInputsHashCode(model, inputShapes);

            if (modelHash == m_CachedModelHash)
            {
                return;
            }

            m_CachedModelHash = modelHash;
            m_CompiledLayers.Clear();

            IDictionary <string, TensorShape> shapesByName;

            ModelAnalyzer.ListTemporaryTensorShapes(model, inputShapes, out shapesByName);

            foreach (var l in model.layers)
            {
                if (m_CompiledLayers.ContainsKey(l))
                {
                    continue; // already compiled
                }
                if (l.inputs.Length == 0)
                {
                    continue; // don't need to compile layers without inputs, so far all of them are CPU only
                }
                var X = shapesByName[l.inputs[0]];
                var O = shapesByName[l.name];

                ComputeKernel kernel = new ComputeKernel();
                if (l.type == Layer.Type.Dense)
                {
                    var itemSize = 4; // @TODO: itemSizeInBytes == 2 | float16
                    kernel = BestKernel(
                        ComputeKernelLibrary.Dense(X, l.datasets[0].shape, O, itemSize >> 2));
                }
                else if (
                    l.type == Layer.Type.Conv2D)
                {
                    Assert.IsNotNull(l.stride);
                    Assert.IsNotNull(l.pad);
                    kernel = BestKernel(
                        ComputeKernelLibrary.Conv2D(X, l.datasets[0].shape, O, l.stride, l.pad));
                }
                else if (
                    l.type == Layer.Type.DepthwiseConv2D)
                {
                    kernel = BestKernel(
                        ComputeKernelLibrary.DepthwiseConv2D(X, l.datasets[0].shape, O));
                }
                else if (
                    l.type == Layer.Type.Conv2DTrans)
                {
                    kernel = BestKernel(
                        ComputeKernelLibrary.Conv2DTrans(X, l.datasets[0].shape, O));
                }
                else if (
                    l.type == Layer.Type.Upsample2D)
                {
                    kernel = BestKernel(
                        ComputeKernelLibrary.Upsample2D(X, O));
                }
                else if (
                    l.type == Layer.Type.MaxPool2D ||
                    l.type == Layer.Type.AvgPool2D)
                {
                    var kernelName = l.type.ToString();

                    Assert.IsNotNull(l.pool);
                    Assert.IsNotNull(l.stride);
                    Assert.IsNotNull(l.pad);
                    var pad = X.AdjustPadToPool(l.pool, l.stride, l.pad);
                    if (pad[0] == 0 && pad[1] == 0 && pad[2] == 0 && pad[3] == 0)
                    {
                        kernelName += "_NoPads";
                    }

                    kernel = BestKernel(
                        ComputeKernelLibrary.Pool2D(X, O, kernelName));
                }
                // @TODO: reimplement GlobalPools, currently require different kernels for each pyramid step
                //else if (
                //    l.type == Layer.Type.GlobalMaxPool2D ||
                //    l.type == Layer.Type.GlobalAvgPool2D)
                //{
                //    var kernelName = l.type.ToString();
                //    kernel = BestKernel(
                //        ComputeKernelLibrary.GlobalPool2D(X, O, kernelName));
                //}
                else if (
                    l.type == Layer.Type.ScaleBias)
                {
                    kernel = BestKernel(
                        ComputeKernelLibrary.ScaleBias(X, O));
                }
                // @TODO: reimplement Normalization, which became a multi-kernel operation after optimizations
                //else if (
                //    l.type == Layer.Type.Normalization)
                //{
                //    kernel = BestKernel(
                //        ComputeKernelLibrary.Normalization(X, O));
                //}
                else if (
                    l.type == Layer.Type.Add ||
                    l.type == Layer.Type.Sub ||
                    l.type == Layer.Type.Mul ||
                    l.type == Layer.Type.Div ||
                    l.type == Layer.Type.Pow ||
                    l.type == Layer.Type.Min ||
                    l.type == Layer.Type.Max
                    // || l.type == Layer.Type.Mean @TODO: implement BroadcastMean
                    )
                {
                    var kernelName = "Broadcast" + l.type;
                    kernel = BestKernel(
                        ComputeKernelLibrary.Broadcast(X, O, kernelName));
                }
                // @TODO: implement Concat, currently might require different kernel for each tensor
                //else if (
                //    l.type == Layer.Type.Concat) {}
                // Activations
                else if (l.type == Layer.Type.Activation)
                {
                    if (l.activation == Layer.Activation.Softmax)
                    {
                        kernel = BestKernel(
                            ComputeKernelLibrary.Softmax(X, O));
                    }
                    else if (l.activation == Layer.Activation.LogSoftmax)
                    {
                        kernel = BestKernel(
                            ComputeKernelLibrary.LogSoftmax(X, O));
                    }
                    else if (l.activation == Layer.Activation.PRelu)
                    {
                        kernel = BestKernel(
                            ComputeKernelLibrary.PRelu(X, O));
                    }
                    else if (l.activation != Layer.Activation.None)
                    {
                        var kernelName = l.activation.ToString();
                        kernel = BestKernel(
                            ComputeKernelLibrary.Activation(X, O, kernelName));
                    }
                }

                m_CompiledLayers.Add(l, new CompiledLayer {
                    kernel = kernel, shape = O
                });
            }
        }