Example #1
0
        /// <summary>
        /// Sets up the Azure storage (Points and Centroids) for the first k-means iteration.
        /// </summary>
        public void InitializeStorage()
        {
            AzureHelper.LogPerformance(() =>
            {
                Random random = new Random();

                if (jobData.Points == null)
                {
                    // Initialize the points blob with N random ClusterPoints
                    Points = AzureHelper.CreateBlob(jobData.JobID.ToString(), AzureHelper.PointsBlob);
                    using (ObjectStreamWriter <ClusterPoint> stream = new ObjectStreamWriter <ClusterPoint>(Points, point => point.ToByteArray(), ClusterPoint.Size))
                    {
                        for (int i = 0; i < jobData.N; i++)
                        {
                            stream.Write(new ClusterPoint(
                                             random.NextDouble() * 100 - 50,
                                             random.NextDouble() * 100 - 50,
                                             Guid.Empty));
                        }
                    }
                }
                else
                {
                    // Use the given points blob
                    Points = AzureHelper.GetBlob(jobData.Points);

                    // Initialize N based on that
                    using (ObjectStreamReader <ClusterPoint> stream = new ObjectStreamReader <ClusterPoint>(Points, ClusterPoint.FromByteArray, ClusterPoint.Size))
                    {
                        jobData.N = (int)stream.Length;
                    }
                }

                // Initialize the centroids blob with K random Centroids
                Centroids = AzureHelper.CreateBlob(jobData.JobID.ToString(), AzureHelper.CentroidsBlob);
                using (ObjectStreamWriter <Centroid> stream = new ObjectStreamWriter <Centroid>(Centroids, point => point.ToByteArray(), Centroid.Size))
                {
                    for (int i = 0; i < jobData.K; i++)
                    {
                        stream.Write(new Centroid(
                                         Guid.NewGuid(),
                                         random.Next(-PointRange, PointRange),
                                         random.Next(-PointRange, PointRange)));
                    }
                }
            }, jobID: jobData.JobID.ToString(), methodName: "InitializeStorage", iterationCount: IterationCount, points: new Lazy <string>(() => Points.Uri.ToString()), centroids: new Lazy <string>(() => Centroids.Uri.ToString()), machineID: MachineID);
        }
Example #2
0
        private void RecalculateCentroids()
        {
            AzureHelper.LogPerformance(() =>
            {
                // Initialize the output blob
                CloudBlob writeBlob = AzureHelper.CreateBlob(jobData.JobID.ToString(), Guid.NewGuid().ToString());

                // Do the mapping and write the new blob
                using (ObjectStreamReader <Centroid> stream = new ObjectStreamReader <Centroid>(Centroids, Centroid.FromByteArray, Centroid.Size))
                {
                    var newCentroids = stream.Select(c =>
                    {
                        Point newCentroidPoint;
                        if (totalPointsProcessedDataByCentroid.ContainsKey(c.ID) && totalPointsProcessedDataByCentroid[c.ID].NumPointsProcessed != 0)
                        {
                            newCentroidPoint = totalPointsProcessedDataByCentroid[c.ID].PartialPointSum
                                               / (double)totalPointsProcessedDataByCentroid[c.ID].NumPointsProcessed;
                        }
                        else
                        {
                            newCentroidPoint = new Point();
                        }

                        c.X = newCentroidPoint.X;
                        c.Y = newCentroidPoint.Y;

                        return(c);
                    });

                    using (ObjectStreamWriter <Centroid> writeStream = new ObjectStreamWriter <Centroid>(writeBlob, point => point.ToByteArray(), Centroid.Size))
                    {
                        foreach (Centroid c in newCentroids)
                        {
                            writeStream.Write(c);
                        }
                    }
                }

                // Copy the contents of the new blob back into the old blob
                Centroids.CopyFromBlob(writeBlob);

                System.Diagnostics.Trace.TraceInformation("[ServerRole] Finished RecalculateCentroids(). Total points changed: {0}", TotalNumPointsChanged);

                ResetPointChangedCounts();
            }, jobData.JobID.ToString(), methodName: "RecalculateCentroids", iterationCount: IterationCount, points: Points.Uri.ToString(), centroids: Centroids.Uri.ToString(), machineID: MachineID);
        }
Example #3
0
        /// <summary>
        /// Enqueues M messages into a queue. Each message is an instruction to a worker to process a partition of the k-means data.
        /// </summary>
        public void EnqueueTasks(IEnumerable <Worker> workers)
        {
            AzureHelper.LogPerformance(() =>
            {
                int workerNumber = 0;

                // Loop through the known workers and give them each a chunk of the points.
                // Note: This loop must execute in the same order every time, otherwise caching will not work -- the workers will get a different workerNumber each time and therefore a different chunk of the points.
                // We use OrderBy on the PartitionKey to guarantee stable ordering.
                foreach (Worker worker in workers.OrderBy(worker => worker.PartitionKey))
                {
                    KMeansTaskData taskData = new KMeansTaskData(jobData, Guid.NewGuid(), workerNumber++, workers.Count(), Centroids.Uri, DateTime.UtcNow, IterationCount, worker.BuddyGroupID);
                    taskData.Points         = Points.Uri;

                    tasks.Add(new KMeansTask(taskData));

                    AzureHelper.EnqueueMessage(AzureHelper.GetWorkerRequestQueue(worker.PartitionKey), taskData, true);
                }
            }, jobData.JobID.ToString(), methodName: "EnqueueTasks", iterationCount: IterationCount, points: Points.Uri.ToString(), centroids: Centroids.Uri.ToString(), machineID: MachineID);
        }
Example #4
0
        /// <summary>
        /// Handles a worker's TaskResult from a running k-means job. Adds up the partial sums from the TaskResult.
        /// </summary>
        /// <param name="message"></param>
        /// <returns>False if the given taskData result has already been counted, true otherwise.</returns>
        public bool ProcessWorkerResponse(KMeansTaskResult taskResult, IEnumerable <Worker> workers)
        {
            // Make sure we're actually still waiting for a result for this taskData
            // If not, this might be a duplicate queue message
            if (!TaskResultMatchesRunningTask(taskResult))
            {
                return(true);
            }

            AzureHelper.LogPerformance(() =>
            {
                KMeansTask task = TaskResultWithTaskID(taskResult.TaskID);
                task.Running    = false; // The task has returned a response, which means that it has stopped running

                // Add the worker's updated points blocks
                if (taskResult.PointsBlockListBlob != null)
                {
                    using (Stream stream = AzureHelper.GetBlob(taskResult.PointsBlockListBlob).OpenRead())
                    {
                        BinaryFormatter bf            = new BinaryFormatter();
                        List <string> pointsBlockList = bf.Deserialize(stream) as List <string>;
                        pointsBlockIDs.AddRange(pointsBlockList);
                    }
                }

                // Copy out and integrate the data from the worker response
                AddDataFromTaskResult(taskResult);
            }, jobData.JobID.ToString(), methodName: "ProcessWorkerResponse", iterationCount: IterationCount, points: Points.Uri.ToString(), centroids: Centroids.Uri.ToString(), machineID: MachineID);

            // If this is the last worker to return, this iteration is done and we should start the next one
            if (NoMoreRunningTasks())
            {
                NextIteration(workers);
            }

            return(true);
        }