Example #1
0
        public static int Results(float[] fftOutput, float[] result, float decibelOffset)
        {
            float max  = float.MinValue;
            int   peak = -1;
            int   y    = 0;

            for (int x = 0; x < fftOutput.Length; x += 2)
            {
                // calculate magnitude of a FFT bin (L2 norm)
                // divide magnitudes by FFT input length (so that they aren't dependent in the input length)
                // multiply by 2 since the FFT result only contains half of the energy (the second half are the negative frequencies of the "full" FFT result)
                // calculate dB scale value
                // http://www.mathworks.de/support/tech-notes/1700/1702.html
                result[y] = (float)VolumeUtil.LinearToDecibel(
                    CalculateMagnitude(fftOutput[x], fftOutput[x + 1]) / fftOutput.Length * 2) + decibelOffset;
                if (result[y] > max)
                {
                    max  = result[y];
                    peak = y;
                }
                if (float.IsNegativeInfinity(result[y]))
                {
                    result[y] = float.MinValue;
                }
                y++;
            }
            return(peak);
        }
Example #2
0
        /// <summary>
        /// Normalizes the vertical-axis scale of a FFT result and transforms it to a logarithmic dB
        /// scale for a better visualization. The resulting dB values aren't absolute, but relative to the
        /// main peak (highest peak).
        /// See: Windowing Functions Improve FFT Results, Part II (http://www.tmworld.com/article/325630-Windowing_Functions_Improve_FFT_Results_Part_II.php)
        /// </summary>
        /// <param name="fftOutput">the output of a FFT function (interleaved complex numbers)</param>
        /// <param name="normalizedResult">the normalized result for visualization</param>
        public static void NormalizeResults(float[] fftOutput, float[] normalizedResult)
        {
            float max = float.MinValue;
            int   y   = 0;

            for (int x = 0; x < fftOutput.Length; x += 2)
            {
                // calculate magnitude of a FFT bin (L2 norm)
                normalizedResult[y] = CalculateMagnitude(fftOutput[x], fftOutput[x + 1]);
                // find out max value for normalization
                if (normalizedResult[y] > max)
                {
                    max = normalizedResult[y];
                }
                y++;
            }
            for (int x = 0; x < normalizedResult.Length; x++)
            {
                // normalize by max value & calculate dB scale value
                normalizedResult[x] = (float)VolumeUtil.LinearToDecibel(normalizedResult[x] / max);
            }
        }