Example #1
0
		//***********************************************************************
		// Tests the correct implementation of the modulo exponential and
		// inverse modulo functions using RSA encryption and decryption.  The two
		// pseudoprimes p and q are fixed, but the two RSA keys are generated
		// for each round of testing.
		//***********************************************************************

		public static void RSATest2(int rounds)
		{
			Random rand = new Random();
			byte[] val = new byte[64];

			byte[] pseudoPrime1 = {
						(byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
						(byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
						(byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
						(byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
						(byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
						(byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
						(byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
						(byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
						(byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
						(byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
						(byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
				};

			byte[] pseudoPrime2 = {
						(byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
						(byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
						(byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
						(byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
						(byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
						(byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
						(byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
						(byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
						(byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
						(byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
						(byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
				};


			BigInteger bi_p = new BigInteger(pseudoPrime1);
			BigInteger bi_q = new BigInteger(pseudoPrime2);
			BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
			BigInteger bi_n = bi_p * bi_q;

			for (int count = 0; count < rounds; count++)
			{
				// generate private and public key
				BigInteger bi_e = bi_pq.genCoPrime(512, rand);
				BigInteger bi_d = bi_e.modInverse(bi_pq);

				Console.WriteLine("\ne =\n" + bi_e.ToString(10));
				Console.WriteLine("\nd =\n" + bi_d.ToString(10));
				Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);

				Console.Write("Round = " + count);

				// encrypt and decrypt data
				BigInteger bi_data = new BigInteger(val, t1);
				BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
				BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

				// compare
				if (bi_decrypted != bi_data)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(bi_data + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}

		}
Example #2
0
		//***********************************************************************
		// Tests the correct implementation of the modulo exponential function
		// using RSA encryption and decryption (using pre-computed encryption and
		// decryption keys).
		//***********************************************************************

		public static void RSATest(int rounds)
		{
			Random rand = new Random(1);
			byte[] val = new byte[64];

			// private and public key
			BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
			BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
			BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);

			Console.WriteLine("e =\n" + bi_e.ToString(10));
			Console.WriteLine("\nd =\n" + bi_d.ToString(10));
			Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

			for (int count = 0; count < rounds; count++)
			{
				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);

				Console.Write("Round = " + count);

				// encrypt and decrypt data
				BigInteger bi_data = new BigInteger(val, t1);
				BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
				BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

				// compare
				if (bi_decrypted != bi_data)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(bi_data + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}

		}
Example #3
0
		//***********************************************************************
		// Probabilistic prime test based on Rabin-Miller's
		//
		// for any p > 0 with p - 1 = 2^s * t
		//
		// p is probably prime (strong pseudoprime) if for any a < p,
		// 1) a^t mod p = 1 or
		// 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
		//
		// Otherwise, p is composite.
		//
		// Returns
		// -------
		// True if "this" is a strong pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		//***********************************************************************

		public bool RabinMillerTest(int confidence)
		{
			BigInteger thisVal;
			if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
				thisVal = -this;
			else
				thisVal = this;

			if (thisVal.dataLength == 1)
			{
				// test small numbers
				if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
					return false;
				else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
					return true;
			}

			if ((thisVal.data[0] & 0x1) == 0)     // even numbers
				return false;


			// calculate values of s and t
			BigInteger p_sub1 = thisVal - (new BigInteger(1));
			int s = 0;

			for (int index = 0; index < p_sub1.dataLength; index++)
			{
				uint mask = 0x01;

				for (int i = 0; i < 32; i++)
				{
					if ((p_sub1.data[index] & mask) != 0)
					{
						index = p_sub1.dataLength;      // to break the outer loop
						break;
					}
					mask <<= 1;
					s++;
				}
			}

			BigInteger t = p_sub1 >> s;

			int bits = thisVal.bitCount();
			BigInteger a = new BigInteger();
			Random rand = new Random();

			for (int round = 0; round < confidence; round++)
			{
				bool done = false;

				while (!done)		// generate a < n
				{
					int testBits = 0;

					// make sure "a" has at least 2 bits
					while (testBits < 2)
						testBits = (int)(rand.NextDouble() * bits);

					a.genRandomBits(testBits, rand);

					int byteLen = a.dataLength;

					// make sure "a" is not 0
					if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
						done = true;
				}

				// check whether a factor exists (fix for version 1.03)
				BigInteger gcdTest = a.gcd(thisVal);
				if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
					return false;

				BigInteger b = a.modPow(t, thisVal);

				/*
				Console.WriteLine("a = " + a.ToString(10));
				Console.WriteLine("b = " + b.ToString(10));
				Console.WriteLine("t = " + t.ToString(10));
				Console.WriteLine("s = " + s);
				*/

				bool result = false;

				if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
					result = true;

				for (int j = 0; result == false && j < s; j++)
				{
					if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
					{
						result = true;
						break;
					}

					b = (b * b) % thisVal;
				}

				if (result == false)
					return false;
			}
			return true;
		}
Example #4
0
		//***********************************************************************
		// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
		//
		// p is probably prime if for any a < p (a is not multiple of p),
		// a^((p-1)/2) mod p = J(a, p)
		//
		// where J is the Jacobi symbol.
		//
		// Otherwise, p is composite.
		//
		// Returns
		// -------
		// True if "this" is a Euler pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		//***********************************************************************

		public bool SolovayStrassenTest(int confidence)
		{
			BigInteger thisVal;
			if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
				thisVal = -this;
			else
				thisVal = this;

			if (thisVal.dataLength == 1)
			{
				// test small numbers
				if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
					return false;
				else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
					return true;
			}

			if ((thisVal.data[0] & 0x1) == 0)     // even numbers
				return false;


			int bits = thisVal.bitCount();
			BigInteger a = new BigInteger();
			BigInteger p_sub1 = thisVal - 1;
			BigInteger p_sub1_shift = p_sub1 >> 1;

			Random rand = new Random();

			for (int round = 0; round < confidence; round++)
			{
				bool done = false;

				while (!done)		// generate a < n
				{
					int testBits = 0;

					// make sure "a" has at least 2 bits
					while (testBits < 2)
						testBits = (int)(rand.NextDouble() * bits);

					a.genRandomBits(testBits, rand);

					int byteLen = a.dataLength;

					// make sure "a" is not 0
					if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
						done = true;
				}

				// check whether a factor exists (fix for version 1.03)
				BigInteger gcdTest = a.gcd(thisVal);
				if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
					return false;

				// calculate a^((p-1)/2) mod p

				BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
				if (expResult == p_sub1)
					expResult = -1;

				// calculate Jacobi symbol
				BigInteger jacob = Jacobi(a, thisVal);

				//Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
				//Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

				// if they are different then it is not prime
				if (expResult != jacob)
					return false;
			}

			return true;
		}
Example #5
0
		//***********************************************************************
		// Probabilistic prime test based on Fermat's little theorem
		//
		// for any a < p (p does not divide a) if
		//      a^(p-1) mod p != 1 then p is not prime.
		//
		// Otherwise, p is probably prime (pseudoprime to the chosen base).
		//
		// Returns
		// -------
		// True if "this" is a pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		// Note - this method is fast but fails for Carmichael numbers except
		// when the randomly chosen base is a factor of the number.
		//
		//***********************************************************************

		public bool FermatLittleTest(int confidence)
		{
			BigInteger thisVal;
			if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
				thisVal = -this;
			else
				thisVal = this;

			if (thisVal.dataLength == 1)
			{
				// test small numbers
				if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
					return false;
				else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
					return true;
			}

			if ((thisVal.data[0] & 0x1) == 0)     // even numbers
				return false;

			int bits = thisVal.bitCount();
			BigInteger a = new BigInteger();
			BigInteger p_sub1 = thisVal - (new BigInteger(1));
			Random rand = new Random();

			for (int round = 0; round < confidence; round++)
			{
				bool done = false;

				while (!done)		// generate a < n
				{
					int testBits = 0;

					// make sure "a" has at least 2 bits
					while (testBits < 2)
						testBits = (int)(rand.NextDouble() * bits);

					a.genRandomBits(testBits, rand);

					int byteLen = a.dataLength;

					// make sure "a" is not 0
					if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
						done = true;
				}

				// check whether a factor exists (fix for version 1.03)
				BigInteger gcdTest = a.gcd(thisVal);
				if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
					return false;

				// calculate a^(p-1) mod p
				BigInteger expResult = a.modPow(p_sub1, thisVal);

				int resultLen = expResult.dataLength;

				// is NOT prime is a^(p-1) mod p != 1

				if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
				{
					//Console.WriteLine("a = " + a.ToString());
					return false;
				}
			}

			return true;
		}