Example #1
0
        /// <summary>
        ///
        /// </summary>
        public void CreateNewGeneration()
        {
            Generations[NbGeneration - 1] = Generations[NbGeneration - 1].OrderByDescending(x => x.Fitness).ToArray();
            //Checker si shallow copy
            NetworkGenome[] generationTemp = new NetworkGenome[GenerationSize];
            NetworkGenome[] elites         = GetElites(NbGeneration);

            float totalFitness = GetTotalFitness(NbGeneration);


            int indexNewGen  = 0;
            int indexPartner = -1;

            //garde lelite
            for (int i = 0; i < elites.Length && indexNewGen < GenerationSize; i++)
            {
                generationTemp[indexNewGen++] = elites[i];
            }
            //rajoute random pour diversiter
            for (int i = 0; i < (int)(LoserPercent * GenerationSize) && indexNewGen < GenerationSize; i++)
            {
                generationTemp[indexNewGen++] = new NetworkGenome(NeuralNetwork.Layout, NeuralNetwork.NbNecessaryInputs, NeuralNetwork.NetworkSize, MutationRnd, CrossOverRnd, MutationChance);
            }

            //fill avec des enfants
            while (indexNewGen < GenerationSize)
            {
                indexPartner = ChooseMateIndex(NbGeneration);
                Genome[] enfants = Generations[NbGeneration - 1][indexPartner].ProduceOffspring(Generations[NbGeneration - 1][ChooseMateIndex(NbGeneration, indexPartner)]);
                generationTemp[indexNewGen++] = (enfants[0] as NetworkGenome);
                generationTemp[indexNewGen++] = (enfants[1] as NetworkGenome);
            }

            Generations.Add(generationTemp);
        }
 public NetworkGenome(NetworkGenome genom) :
     base(genom.Dna, genom.MutationRnd, genom.CrossOverRnd)
 {
     Equation = genom.Equation;
     Layout   = genom.Layout;
     NbInputs = genom.NbInputs;
     Fitness  = genom.Fitness;
 }
Example #3
0
 /// <summary>
 ///
 /// </summary>
 public void CreateFirstGeneration()
 {
     NetworkGenome[] generationTemp = new NetworkGenome[GenerationSize];
     for (int i = 0; i < GenerationSize; i++)
     {
         generationTemp[i] = new NetworkGenome(NeuralNetwork.Layout, NeuralNetwork.NbNecessaryInputs,
                                               NeuralNetwork.NetworkSize, MutationRnd, CrossOverRnd, MutationChance, NeuralNetwork.Layers[0].Neurons[0].MinValueRand, NeuralNetwork.Layers[0].Neurons[0].MaxValueRand);
     }
     Generations.Add(generationTemp);
 }
        /// <summary>
        ///
        /// </summary>
        /// <param name="partner"></param>
        /// <returns></returns>
        public override Genome[] ProduceOffspring(Genome partner)
        {
            Genome[] r = new Genome[2];
            if (Dna.Length != partner.Dna.Length)
            {
                //if (partner is NetworkGenome)
                //  return ProduceOffspringNeat(partner as NetworkGenome);
                //else
                //  throw new Exception("Les deux chromosones ne sont pas compatibles");
            }

            NetworkGenome Children1 = new NetworkGenome(this);
            NetworkGenome Children2 = new NetworkGenome(this);

            int indexDna   = 0;
            int crossPoint = 0;;

            for (int layer = 0; layer < this.Layout.Length; layer++)
            {
                for (int node = 0; node < this.Layout[layer]; node++)
                {
                    //pour skip les biais A CHECKER
                    indexDna++;
                    crossPoint = CrossOverRnd.Next(0, ((layer == 0) ? NbInputs : Layout[layer - 1]));
                    for (int weigths = 0; weigths < ((layer == 0) ? NbInputs:Layout[layer - 1]); weigths++)
                    {
                        if (weigths < crossPoint)
                        {
                            Children1.Dna[indexDna] = partner.Dna[indexDna];
                        }
                        else
                        {
                            Children2.Dna[indexDna] = partner.Dna[indexDna];
                        }
                        indexDna++;
                    }
                }
            }
            Children1.Mutate();
            Children2.Mutate();
            Children1.Fitness = -1;
            Children2.Fitness = -1;
            r[0] = Children1;
            r[1] = Children2;
            return(r);
        }
 public Tuple <Genome, Genome> ProduceOffspringNeat(NetworkGenome partner)
 {
     throw new NotImplementedException();
 }