Example #1
0
        public PolylinePointD3D WithPosition(PointD3D position)
        {
            var result = this;

            result.Position = position;
            return(result);
        }
Example #2
0
        public static void Test_GetPolylinePointsWithWestAndNorth_02()
        {
            const double maxDev = 1E-6;
            var          rnd    = new System.Random();

            var testPoints = new PointD3D[1024];

            testPoints[0] = PointD3D.Empty;
            testPoints[1] = new PointD3D(0, 0.1, 0); // first line segment always in y direction, so that north is in z direction and west in -x direction
            for (int i = 2; i < testPoints.Length; ++i)
            {
                testPoints[i] = new PointD3D(rnd.NextDouble(), rnd.NextDouble(), rnd.NextDouble());
            }

            var result = PolylineMath3D.GetPolylinePointsWithWestAndNorth(testPoints).ToArray();

            for (int i = 1; i < result.Length; ++i)
            {
                var forwardRaw = result[i].Position - result[i - 1].Position;
                var west       = result[i].WestVector;
                var north      = result[i].NorthVector;

                Assert.AreNotEqual(forwardRaw.Length, 0); // GetPolylinePointsWithWestAndNorth should only deliver non-empty segments
                var forward = forwardRaw.Normalized;

                Assert.AreEqual(west.Length, 1, maxDev);                          // is west normalized
                Assert.AreEqual(north.Length, 1, maxDev);                         // is north normalized
                Assert.AreEqual(VectorD3D.DotProduct(west, forward), 0, maxDev);  // is west perpendicular to forward
                Assert.AreEqual(VectorD3D.DotProduct(north, forward), 0, maxDev); // is north perpendicular to forward
                Assert.AreEqual(VectorD3D.DotProduct(west, north), 0, maxDev);    // is west perpendicular to north
                var matrix = Altaxo.Geometry.Matrix4x3.NewFromBasisVectorsAndLocation(west, north, forward, PointD3D.Empty);
                Assert.AreEqual(matrix.Determinant, 1, maxDev);                   // west-north-forward are a right handed coordinate system
            }
        }
Example #3
0
 public PolylinePointD3DAsClass(VectorD3D forwardVector, VectorD3D westVector, VectorD3D northVector, PointD3D position)
 {
     Position      = position;
     WestVector    = westVector;
     NorthVector   = northVector;
     ForwardVector = forwardVector;
 }
Example #4
0
        /// <summary>
        /// Expands this rectangle, so that it contains the point p.
        /// </summary>
        /// <param name="p">The point that should be contained in this rectangle.</param>
        /// <returns>The new rectangle that now contains the point p.</returns>
        private void ExpandToInclude(PointD3D p)
        {
            if (!(Contains(p)))
            {
                if (p.X < _x)
                {
                    _sizeX += _x - p.X;
                    _x      = p.X;
                }
                else if (p.X > (_x + _sizeX))
                {
                    _sizeX = p.X - _x;
                }

                if (p.Y < _y)
                {
                    _sizeY += _y - p.Y;
                    _y      = p.Y;
                }
                else if (p.Y > (_y + _sizeY))
                {
                    _sizeY = p.Y - _y;
                }

                if (p.Z < _z)
                {
                    _sizeZ += _z - p.Z;
                    _z      = p.Z;
                }
                else if (p.Z > (_z + _sizeZ))
                {
                    _sizeZ = p.Z - _z;
                }
            }
        }
Example #5
0
 /// <summary>
 /// Creates a transformation matrix that projects 2D points (in fact: 3D-points with ignored z-coordinate) to a plane that is defined by 2 vectors (<paramref name="e"/> and <paramref name="n"/>) and a point
 /// on that plane <paramref name="p"/>. The x-coordinates of the original point is projected in the <paramref name="e"/> direction, the y-coordinate in the <paramref name="n"/> direction.
 /// </summary>
 /// <param name="e">East vector: direction, in which the x-coordinate of the original points is projected.</param>
 /// <param name="n">North vector: direction, in which the y-coordinate of the original points is projected.</param>
 /// <param name="p">The 3D point, which is the origin of the spanned plane (the original point with the coordinates (0,0) is projected to this point.</param>
 /// <returns>A transformation matrix that projects 2D points (in fact: 3D-points with ignored z-coordinate) to a plane in 3D space.</returns>
 public static Matrix4x3 Get2DProjectionToPlane(VectorD3D e, VectorD3D n, PointD3D p)
 {
     return(new Matrix4x3(
                e.X, e.Y, e.Z,
                n.X, n.Y, n.Z,
                0, 0, 0,
                p.X, p.Y, p.Z));
 }
Example #6
0
 public RectangleD3D(PointD3D position, VectorD3D size)
 {
     _x     = position.X;
     _y     = position.Y;
     _z     = position.Z;
     _sizeX = size.X;
     _sizeY = size.Y;
     _sizeZ = size.Z;
 }
Example #7
0
        /// <summary>
        /// Inverse transform a point p in such a way that the result will fullfill the relation p = result * matrix ( the * operator being the prepend transformation for points).
        /// </summary>
        /// <param name="p">The point p to inverse transform.</param>
        /// <returns>The inverse transformation of point <paramref name="p"/>.</returns>
        public PointD3D InverseTransform(PointD3D p)
        {
            return(new PointD3D(
                       (M23 * (M32 * (M41 - p.X) + M31 * (-M42 + p.Y)) + M22 * (-(M33 * M41) + M31 * M43 + M33 * p.X - M31 * p.Z) + M21 * (M33 * M42 - M32 * M43 - M33 * p.Y + M32 * p.Z)) / Determinant,

                       (M13 * (M32 * (-M41 + p.X) + M31 * (M42 - p.Y)) + M12 * (M33 * M41 - M31 * M43 - M33 * p.X + M31 * p.Z) + M11 * (-(M33 * M42) + M32 * M43 + M33 * p.Y - M32 * p.Z)) / Determinant,

                       (M13 * (M22 * (M41 - p.X) + M21 * (-M42 + p.Y)) + M12 * (-(M23 * M41) + M21 * M43 + M23 * p.X - M21 * p.Z) + M11 * (M23 * M42 - M22 * M43 - M23 * p.Y + M22 * p.Z)) / Determinant
                       ));
        }
Example #8
0
        /// <summary>
        /// Transforms the specified point <paramref name="p"/>. For a point transform, the offset elements M41..M43 are used.
        /// The transformation is carried out as a prepend transformation, i.e. result = p * matrix (p considered as horizontal vector).
        /// </summary>
        /// <param name="p">The point to transform.</param>
        /// <returns>The transformed point.</returns>
        public PointD3D Transform(PointD3D p)
        {
            double x = p.X;
            double y = p.Y;
            double z = p.Z;

            return(new PointD3D(
                       x * M11 + y * M21 + z * M31 + M41,
                       x * M12 + y * M22 + z * M32 + M42,
                       x * M13 + y * M23 + z * M33 + M43
                       ));
        }
Example #9
0
        /// <summary>
        /// Gets a projection matrix that projects a point in the direction given by <paramref name="v"/> onto a plane with is given by an arbitrary point on the plane <paramref name="p"/> and the plane's normal <paramref name="q"/>.
        /// </summary>
        /// <param name="v">The projection direction. Not required to be normalized.</param>
        /// <param name="p">An arbitrary point onto the projection plane.</param>
        /// <param name="q">The projection plane's normal. Not required to be normalized.</param>
        /// <returns>The projection matrix that projects a point in the direction given by <paramref name="v"/> onto a plane with is given by an arbitrary point on the plane <paramref name="p"/> and the plane's normal <paramref name="q"/>.</returns>
        public static Matrix4x3 GetProjectionToPlane(VectorD3D v, PointD3D p, VectorD3D q)
        {
            double OneByQV = 1 / VectorD3D.DotProduct(q, v);
            double DotPQ   = p.X * q.X + p.Y * q.Y + p.Z * q.Z;

            return(new Matrix4x3(
                       1 - q.X * v.X * OneByQV, -q.X * v.Y * OneByQV, -q.X * v.Z * OneByQV,
                       -q.Y * v.X * OneByQV, 1 - q.Y * v.Y * OneByQV, -q.Y * v.Z * OneByQV,
                       -q.Z * v.X * OneByQV, -q.Z * v.Y * OneByQV, 1 - q.Z * v.Z * OneByQV,
                       DotPQ * v.X * OneByQV, DotPQ * v.Y * OneByQV, DotPQ * v.Z * OneByQV
                       ));
        }
Example #10
0
        /// <summary>
        /// Transforms the specified point <paramref name="p"/>. For a point transform, the offset elements M41..M43 are used.
        /// The transformation is carried out as a prepend transformation, i.e. result = p * matrix (p considered as horizontal vector).
        /// </summary>
        /// <param name="p">The point to transform.</param>
        /// <returns>The transformed point.</returns>
        public PointD3D Transform(PointD3D p)
        {
            double x = p.X;
            double y = p.Y;
            double z = p.Z;

            double tw = x * M14 + y * M24 + z * M34 + M44;

            return(new PointD3D(
                       (x * M11 + y * M21 + z * M31 + M41) / tw,
                       (x * M12 + y * M22 + z * M32 + M42) / tw,
                       (x * M13 + y * M23 + z * M33 + M43) / tw
                       ));
        }
Example #11
0
        /// <summary>
        /// Gets the relative positions of the two points on a line segment that have a given distance to a third point. The returned relative values are in the range [-Infinity, Infinity] and
        /// therefore don't neccessarily lie directly on the line segment. Furthermore, a solution not always exists (in this case the returned values are NaN).
        /// </summary>
        /// <param name="p0">The start point of the line segment..</param>
        /// <param name="p1">The end point of the line segment.</param>
        /// <param name="ps">The third point.</param>
        /// <param name="distance">The distance between a point on the line sigment and the third point.</param>
        /// <returns>The relative positions of the points on the line segment that have the provided distance to the third point. The returned relative values are in the range [-Infinity, Infinity] and
        /// therefore don't neccessarily lie directly on the line segment. Furthermore, a solution not always exists (in this case the returned values are NaN). </returns>
        public static Tuple <double, double> GetRelativePositionsOnLineSegmentForPointsAtDistanceToPoint(PointD3D p0, PointD3D p1, PointD3D ps, double distance)
        {
            // we rescale the problem so that p0 is becoming the origin
            p1 = new PointD3D(p1.X - p0.X, p1.Y - p0.Y, p1.Z - p0.Z);
            ps = new PointD3D(ps.X - p0.X, ps.Y - p0.Y, ps.Z - p0.Z);

            var p1Sq           = p1.X * p1.X + p1.Y * p1.Y + p1.Z * p1.Z;
            var psSq           = ps.X * ps.X + ps.Y * ps.Y + ps.Z * ps.Z;
            var p1ps           = p1.X * ps.X + p1.Y * ps.Y + p1.Z * ps.Z;
            var squareRootTerm = Math.Sqrt(p1ps * p1ps - p1Sq * (psSq - distance * distance));
            var t1             = (p1ps - squareRootTerm) / p1Sq;
            var t2             = (p1ps + squareRootTerm) / p1Sq;

            return(new Tuple <double, double>(t1, t2));
        }
Example #12
0
        /// <summary>
        /// Gets a sharp polyline from a point array which may contain consecutive dublettes, i.e. two or more consecutive points with equal coordinates.
        /// </summary>
        /// <param name="points">The points.</param>
        /// <returns>An instance of <see cref="SharpPolylineD3D"/>, free from consecutive dublettes. Attention: the number of points in this polyline may differ from
        /// the number of points that were provided!</returns>
        public static SharpPolylineD3D FromPointsWithPossibleDublettes(IEnumerable <PointD3D> points)
        {
            var mypoints = new List <PointD3D>();

            if (null != points)
            {
                PointD3D prevPoint = PointD3D.Empty;

                foreach (var point in points)
                {
                    if (point != prevPoint || mypoints.Count == 0)
                    {
                        mypoints.Add(point);
                    }
                    prevPoint = point;
                }
            }

            return(new SharpPolylineD3D(mypoints.ToArray()));
        }
Example #13
0
        public IPolylineD3D ShortenedBy(RADouble marginAtStart, RADouble marginAtEnd)
        {
            if (_points.Length < 2)
            {
                return(null);
            }

            double totLength = TotalLineLength;

            double a1 = marginAtStart.IsAbsolute ? marginAtStart.Value : marginAtStart.Value * totLength;
            double a2 = marginAtEnd.IsAbsolute ? marginAtEnd.Value : marginAtEnd.Value * totLength;

            if (!((a1 + a2) < totLength))
            {
                return(null);
            }

            PointD3D?p0 = null;
            PointD3D?p1 = null;
            int      i0 = 0;
            int      i1 = 0;

            if (a1 <= 0)
            {
                p0 = PointD3D.Interpolate(_points[0], _points[1], a1 / totLength);
                i0 = 1;
            }
            else
            {
                double sum = 0, prevSum = 0;
                for (int i = 1; i < _points.Length; ++i)
                {
                    sum += (_points[i] - _points[i - 1]).Length;
                    if (!(sum < a1))
                    {
                        p0 = PointD3D.Interpolate(_points[i - 1], _points[i], (a1 - prevSum) / (sum - prevSum));
                        i0 = p0 != _points[i] ? i : i + 1;
                        break;
                    }
                    prevSum = sum;
                }
            }

            if (a2 <= 0)
            {
                p1 = PointD3D.Interpolate(_points[_points.Length - 2], _points[_points.Length - 1], 1 - a2 / totLength);
                i1 = _points.Length - 2;
            }
            else
            {
                double sum = 0, prevSum = 0;
                for (int i = _points.Length - 2; i >= 0; --i)
                {
                    sum += (_points[i] - _points[i + 1]).Length;
                    if (!(sum < a2))
                    {
                        p1 = PointD3D.Interpolate(_points[i + 1], _points[i], (a2 - prevSum) / (sum - prevSum));
                        i1 = p1 != _points[i] ? i : i - 1;
                        break;
                    }
                    prevSum = sum;
                }
            }

            if (p0.HasValue && p1.HasValue)
            {
                var plist = new List <PointD3D>
                {
                    p0.Value
                };
                for (int i = i0; i <= i1; ++i)
                {
                    plist.Add(_points[i]);
                }
                plist.Add(p1.Value);
                return(new SharpPolylineD3D(plist.ToArray()));
            }
            else
            {
                return(null);
            }
        }
Example #14
0
 /// <summary>
 /// Initializes a new instance of the <see cref="LineD3D"/> struct.
 /// </summary>
 /// <param name="p0">The starting point of the line.</param>
 /// <param name="p1">The end point of the line.</param>
 public LineD3D(PointD3D p0, PointD3D p1)
 {
     _p0 = p0;
     _p1 = p1;
 }
Example #15
0
        /// <summary>
        /// Interpolates between the points <paramref name="p0"/> and <paramref name="p1"/>.
        /// </summary>
        /// <param name="p0">The first point.</param>
        /// <param name="p1">The second point.</param>
        /// <param name="r">Relative way between <paramref name="p0"/> and <paramref name="p1"/> (0..1).</param>
        /// <returns>Interpolation between <paramref name="p0"/> and <paramref name="p1"/>. The return value is <paramref name="p0"/> if <paramref name="r"/> is 0. The return value is <paramref name="p1"/>  if <paramref name="r"/> is 1.  </returns>
        public static PointD3D Interpolate(PointD3D p0, PointD3D p1, double r)
        {
            double or = 1 - r;

            return(new PointD3D(or * p0.X + r * p1.X, or * p0.Y + r * p1.Y, or * p0.Z + r * p1.Z));
        }
Example #16
0
 /// <summary>
 /// Returns a new line with <see cref="P1"/> set to the provided value.
 /// </summary>
 /// <param name="p1">The value for <see cref="P1"/>.</param>
 /// <returns>A new line with <see cref="P1"/> set to the provided value.</returns>
 public LineD3D WithP1(PointD3D p1)
 {
     return(new LineD3D(P0, p1));
 }
Example #17
0
 /// <summary>
 /// Creates a transformation matrix that uses three basis vectors, and a location to construct the matrix that transform points expressed in the three basis vectors to points in
 /// the coordinate system.
 /// </summary>
 /// <param name="xBasis">Basis vector for the x-direction.</param>
 /// <param name="yBasis">Basis vector for the y-direction.</param>
 /// <param name="zBasis">Basis vector for the z-direction.</param>
 /// <param name="origin">The origin of the coordinate system.</param>
 /// <returns>A transformation matrix that uses the three basis vectors, and a location</returns>
 public static Matrix4x3 NewFromBasisVectorsAndLocation(VectorD3D xBasis, VectorD3D yBasis, VectorD3D zBasis, PointD3D origin)
 {
     return(new Matrix4x3(
                xBasis.X, xBasis.Y, xBasis.Z,
                yBasis.X, yBasis.Y, yBasis.Z,
                zBasis.X, zBasis.Y, zBasis.Z,
                origin.X, origin.Y, origin.Z));
 }
Example #18
0
 public PointD3D TransformPoint(PointD3D p)
 {
     return(Transform(p));
 }
Example #19
0
        /// <summary>
        /// Gets the fractional index of the point on a line that has a certain distance to another point <paramref name="ps"/>.
        /// </summary>
        /// <param name="p0">The start point of the line.</param>
        /// <param name="p1">The end point of the line.</param>
        /// <param name="ps">The other point.</param>
        /// <param name="distance">The given distance.</param>
        /// <returns>A relative index on the line [0..1] for the point on the line that has the provided distance to the point <paramref name="ps"/>. If the point <paramref name="ps"/> is too far away, the result will be double.NaN.
        /// If the point <paramref name="ps"/> is too close, the result can be outside the interval [0,1].</returns>
        public static double GetFractionalIndexOfPointOnLineInGivenDistanceToAnotherPoint(PointD3D p0, PointD3D p1, PointD3D ps, double distance)
        {
            VectorD3D p0s      = p0 - ps;
            VectorD3D seg      = p1 - ps;
            double    dotps    = VectorD3D.DotProduct(p0s, seg);
            double    slen_p0s = p0s.SquareOfLength;
            double    slen_seg = seg.SquareOfLength;

            double sqrt = Math.Sqrt(dotps * dotps + (distance * distance - slen_p0s) * slen_seg);

            double t1 = (-dotps - sqrt) / slen_seg;
            double t2 = (-dotps + sqrt) / slen_seg;

            return(t1 >= 0 ? t1 : t2);
        }
Example #20
0
        /// <summary>
        /// Creates the rotation matrix from axis and angle radian.
        /// </summary>
        /// <param name="u">The axis about which the rotation takes place.</param>
        /// <param name="angleRadian">The rotation angle in radian.</param>
        /// <param name="center">The center of rotation.</param>
        /// <returns>Matrix that describes the drotation.</returns>
        public static Matrix4x3 NewRotationFromAxisAndAngleRadian(VectorD3D u, double angleRadian, PointD3D center)
        {
            double cosTheta   = Math.Cos(angleRadian);
            double oMCosTheta = 1 - cosTheta;
            double sinTheta   = Math.Sin(angleRadian);

            double m11 = cosTheta + u.X * u.X * oMCosTheta;
            double m12 = u.X * u.Y * oMCosTheta + u.Z * sinTheta;
            double m13 = u.Z * u.X * oMCosTheta - u.Y * sinTheta;

            double m21 = u.X * u.Y * oMCosTheta - u.Z * sinTheta;
            double m22 = cosTheta + u.Y * u.Y * oMCosTheta;
            double m23 = u.Z * u.Y * oMCosTheta + u.X * sinTheta;

            double m31 = u.X * u.Z * oMCosTheta + u.Y * sinTheta;
            double m32 = u.Y * u.Z * oMCosTheta - u.X * sinTheta;
            double m33 = cosTheta + u.Z * u.Z * oMCosTheta;

            double offsetX = 0, offsetY = 0, offsetZ = 0;

            if (center.X != 0.0 || center.Y != 0.0 || center.Z != 0.0)
            {
                offsetX = -center.X * m11 - center.Y * m21 - center.Z * m31 + center.X;
                offsetY = -center.X * m12 - center.Y * m22 - center.Z * m32 + center.Y;
                offsetZ = -center.X * m13 - center.Y * m23 - center.Z * m33 + center.Z;
            }

            return(new Matrix4x3(m11, m12, m13, m21, m22, m23, m31, m32, m33, offsetX, offsetY, offsetZ));
        }
Example #21
0
 /// <summary>
 /// Initializes a new instance of the <see cref="Ray3D"/> class.
 /// </summary>
 /// <param name="origin">The origin of the line (one arbitrary point at the line).</param>
 /// <param name="direction">The direction of the line.</param>
 public Ray3D(PointD3D origin, VectorD3D direction)
 {
     _origin    = origin;
     _direction = direction;
 }
Example #22
0
 /// <summary>
 /// Gets the distance of a point <paramref name="a"/> to a plane defined by a point <paramref name="p"/> and a normal vector <paramref name="q"/>. The distance is considered to be positive
 /// if the point <paramref name="a"/> is located in the half space into which the vector <paramref name="q"/> is pointing.
 /// </summary>
 /// <param name="a">The point a.</param>
 /// <param name="p">A point on a plane.</param>
 /// <param name="q">The normal vector of that plane (can be not-normalized).</param>
 /// <returns></returns>
 public static double GetDistancePointToPlane(PointD3D a, PointD3D p, VectorD3D q)
 {
     return(((a.X - p.X) * q.X + (a.Y - p.Y) * q.Y + (a.Z - p.Z) * q.Z) / q.Length);
 }
Example #23
0
        /// <summary>
        /// Creates a transformation matrix that does the following: First, it converts a 2D point into a 3D coordinate system with the origin given by <paramref name="p"/>, and the unit vectors <paramref name="e"/> and <paramref name="n"/>.
        /// Then the thus created 3D point is projected in the direction of <paramref name="v"/> onto a plane that is defined by the same point <paramref name="p"/> on the plane and the plane's normal <paramref name="q"/>.
        /// </summary>
        /// <param name="e">East vector: Spans one dimension of the projection of the 2D points to a 3D plane.</param>
        /// <param name="n">North vector: Spans the other dimension of the projection of the 2D input points to a 3D plane.</param>
        /// <param name="v">Direction of the projection of the 3D points to a plane.</param>
        /// <param name="p">Origin of the coordinate system, and point on the projection plane, too.</param>
        /// <param name="q">Normal of the projection plane.</param>
        /// <returns>Matrix that transforms 2D points to a plane. (The 2D points are in fact 3D points with a z-coordinate that is ignored.</returns>
        public static Matrix4x3 Get2DProjectionToPlaneToPlane(VectorD3D e, VectorD3D n, VectorD3D v, PointD3D p, VectorD3D q)
        {
            double qn = VectorD3D.DotProduct(q, e);
            double qw = VectorD3D.DotProduct(q, n);
            double qv = VectorD3D.DotProduct(q, v);

            double qn_qv = qn / qv;
            double qw_qv = qw / qv;

            return(new Matrix4x3(
                       e.X - v.X * qn_qv, e.Y - v.Y * qn_qv, e.Z - v.Z * qn_qv,
                       n.X - v.X * qw_qv, n.Y - v.Y * qw_qv, n.Z - v.Z * qw_qv,
                       0, 0, 0,
                       p.X, p.Y, p.Z));
        }
Example #24
0
        public static void Test_GetFractionalPolyline_01()
        {
            const double maxDev  = 1E-6;
            string       comment = string.Empty;

            for (int caseNo = 0; caseNo < _testCases.Length; ++caseNo)
            {
                if (caseNo == 1 || caseNo == 2) // not with coincidenting points
                {
                    continue;
                }

                var points         = _testCases[caseNo].Item1;
                var expectedOutput = _testCases[caseNo].Item2;

                var maxEndIndex = points.Length - 1;

                for (double endIndex = 0.25; endIndex <= maxEndIndex; endIndex += 0.25)
                {
                    for (double startIndex = 0; startIndex < endIndex; startIndex += 0.25)
                    {
                        var result = PolylineMath3D.GetPolylineWithFractionalStartAndEndIndex(
                            points,
                            expectedOutput[0].Item2, expectedOutput[0].Item3, (points[1] - points[0]).Normalized, startIndex, endIndex,
                            false,
                            false,
                            new PolylinePointD3DAsClass(),
                            false,
                            false,
                            new PolylinePointD3DAsClass()).ToArray();

                        int iShift = (int)Math.Floor(startIndex);
                        for (int i = (int)Math.Ceiling(startIndex); i < (int)Math.Floor(endIndex); ++i)
                        {
                            comment = string.Format("In case no. {0}, startIndex={1}, endIndex={2}, i={3}", caseNo, startIndex, endIndex, i);

                            Assert.AreEqual(expectedOutput[i].Item1, result[i - iShift].Position, comment);

                            Assert.AreEqual(expectedOutput[i].Item2.X, result[i - iShift].WestVector.X, maxDev, comment);
                            Assert.AreEqual(expectedOutput[i].Item2.Y, result[i - iShift].WestVector.Y, maxDev, comment);
                            Assert.AreEqual(expectedOutput[i].Item2.Z, result[i - iShift].WestVector.Z, maxDev, comment);

                            Assert.AreEqual(expectedOutput[i].Item3.X, result[i - iShift].NorthVector.X, maxDev, comment);
                            Assert.AreEqual(expectedOutput[i].Item3.Y, result[i - iShift].NorthVector.Y, maxDev, comment);
                            Assert.AreEqual(expectedOutput[i].Item3.Z, result[i - iShift].NorthVector.Z, maxDev, comment);
                        }

                        // start
                        int    startIndexInt      = (int)Math.Floor(startIndex);
                        double startIndexFrac     = startIndex - startIndexInt;
                        var    expectedStartPoint = startIndexFrac == 0 ? points[startIndexInt] : PointD3D.Interpolate(points[startIndexInt], points[startIndexInt + 1], startIndexFrac);
                        int    vecIndex           = startIndexFrac == 0 ? startIndexInt : startIndexInt + 1;

                        comment = string.Format("In case no. {0}, startIndex={1}, endIndex={2}", caseNo, startIndex, endIndex);

                        Assert.AreEqual(expectedStartPoint, result[0].Position, comment);

                        Assert.AreEqual(expectedOutput[vecIndex].Item2.X, result[0].WestVector.X, maxDev, comment);
                        Assert.AreEqual(expectedOutput[vecIndex].Item2.Y, result[0].WestVector.Y, maxDev, comment);
                        Assert.AreEqual(expectedOutput[vecIndex].Item2.Z, result[0].WestVector.Z, maxDev, comment);

                        Assert.AreEqual(expectedOutput[vecIndex].Item3.X, result[0].NorthVector.X, maxDev, comment);
                        Assert.AreEqual(expectedOutput[vecIndex].Item3.Y, result[0].NorthVector.Y, maxDev, comment);
                        Assert.AreEqual(expectedOutput[vecIndex].Item3.Z, result[0].NorthVector.Z, maxDev, comment);

                        // end
                        int    endIndexInt      = (int)Math.Floor(endIndex);
                        double endIndexFrac     = endIndex - endIndexInt;
                        var    expectedEndPoint = endIndexFrac == 0 ? points[endIndexInt] : PointD3D.Interpolate(points[endIndexInt], points[endIndexInt + 1], endIndexFrac);
                        vecIndex = endIndexFrac == 0 ? endIndexInt : endIndexInt + 1;
                        var resultLast = result[result.Length - 1];

                        Assert.AreEqual(expectedEndPoint, resultLast.Position, comment);

                        Assert.AreEqual(expectedOutput[vecIndex].Item2.X, resultLast.WestVector.X, maxDev, comment);
                        Assert.AreEqual(expectedOutput[vecIndex].Item2.Y, resultLast.WestVector.Y, maxDev, comment);
                        Assert.AreEqual(expectedOutput[vecIndex].Item2.Z, resultLast.WestVector.Z, maxDev, comment);

                        Assert.AreEqual(expectedOutput[vecIndex].Item3.X, resultLast.NorthVector.X, maxDev, comment);
                        Assert.AreEqual(expectedOutput[vecIndex].Item3.Y, resultLast.NorthVector.Y, maxDev, comment);
                        Assert.AreEqual(expectedOutput[vecIndex].Item3.Z, resultLast.NorthVector.Z, maxDev, comment);

                        // test first returned
                    }
                }
            }
        }
Example #25
0
 public RectangleD3D WithLocation(PointD3D newLocation)
 {
     return(new RectangleD3D(newLocation.X, newLocation.Y, newLocation.Z, SizeX, SizeY, SizeZ));
 }
Example #26
0
 /// <summary>
 /// Returns a new line with <see cref="P0"/> set to the provided value.
 /// </summary>
 /// <param name="p0">The value for <see cref="P0"/>.</param>
 /// <returns>A new line with <see cref="P0"/> set to the provided value.</returns>
 public LineD3D WithP0(PointD3D p0)
 {
     return(new LineD3D(p0, P1));
 }
Example #27
0
 public bool Contains(PointD3D p)
 {
     return(p.X >= X && p.Y >= Y && p.Z >= Z && p.X <= (_x + _sizeX) && p.Y <= (_y + _sizeY) && p.Z <= (_z + _sizeZ));
 }