public void MismatchRowsTestforSolveMatrix()
 {
   ComplexFloatSymmetricLevinson cdsl = new ComplexFloatSymmetricLevinson(T4);
   ComplexFloatMatrix X = cdsl.Solve(I5);
 }
 public void NullParameterTestforSolveMatrix()
 {
   ComplexFloatSymmetricLevinson cdsl = new ComplexFloatSymmetricLevinson(T5);
   ComplexFloatMatrix X = cdsl.Solve(null as ComplexFloatMatrix);
 }
 public void SolveVector5()
 {
   int i;
   float e, me;
   ComplexFloatSymmetricLevinson cdsl = new ComplexFloatSymmetricLevinson(T5);
   ComplexFloatVector X = cdsl.Solve(Y5);
   
   // determine the maximum error
   me = 0.0f;
   for (i = 0; i < cdsl.Order; i++)
   {
     e = ComplexMath.Absolute((X5[i] - X[i]) / X5[i]);
     if (e > me)
     {
       me = e;
     }
   }
   Assert.IsTrue(me < Tolerance5, "Maximum Error = " + me.ToString());
 }
 public void MismatchRowsTestforSolveVector()
 {
   ComplexFloatSymmetricLevinson cdsl = new ComplexFloatSymmetricLevinson(T4);
   ComplexFloatVector X = cdsl.Solve(X5);
 }
 public void NullParameterTestforSolveVector()
 {
   ComplexFloatSymmetricLevinson cdsl = new ComplexFloatSymmetricLevinson(T5);
   ComplexFloatVector X = cdsl.Solve(null as ComplexFloatVector);
 }
    public void SolveMatrix5()
    {
      int i, j;
      float e, me;
      ComplexFloatSymmetricLevinson cdsl = new ComplexFloatSymmetricLevinson(T5);

      // check inverse
      ComplexFloatMatrix I = cdsl.Solve(ComplexFloatMatrix.CreateIdentity(5));
      me = 0.0f;
      for (i = 0; i < cdsl.Order; i++)
      {
        for (j = 0; j < cdsl.Order; j++)
        {
          e = ComplexMath.Absolute((I5[i, j] - I[i, j]) / I5[i, j]);
          if (e > me)
          {
            me = e;
          }
        }
      }
      Assert.IsTrue(me < Tolerance5, "Maximum Error = " + me.ToString());
    }