Example #1
0
        ///<summary>
        /// Gets the closest points between the shapes.
        ///</summary>
        ///<param name="shapeA">First shape of the pair.</param>
        ///<param name="shapeB">Second shape of the pair.</param>
        ///<param name="transformA">Transform to apply to the first shape.</param>
        ///<param name="transformB">Transform to apply to the second shape.</param>
        /// <param name="cachedSimplex">Simplex from a previous updated used to warmstart the current attempt.  Updated after each run.</param>
        ///<param name="closestPointA">Closest point on the first shape to the second shape.</param>
        ///<param name="closestPointB">Closest point on the second shape to the first shape.</param>
        ///<returns>Whether or not the objects were intersecting.  If they are intersecting, then the closest points cannot be identified.</returns>
        public static bool GetClosestPoints(ConvexShape shapeA, ConvexShape shapeB, ref RigidTransform transformA, ref RigidTransform transformB,
                                            ref CachedSimplex cachedSimplex, out Vector3f closestPointA, out Vector3f closestPointB)
        {
            RigidTransform localtransformB;

            MinkowskiToolbox.GetLocalTransform(ref transformA, ref transformB, out localtransformB);

            bool toReturn = GetClosestPoints(shapeA, shapeB, ref localtransformB, ref cachedSimplex, out closestPointA, out closestPointB);

            RigidTransform.Transform(ref closestPointA, ref transformA, out closestPointA);
            RigidTransform.Transform(ref closestPointB, ref transformA, out closestPointB);
            return(toReturn);
        }
Example #2
0
        ///<summary>
        /// Updates the cached simplex with the latest run's results.
        ///</summary>
        ///<param name="simplex">Simplex to update.</param>
        public void UpdateCachedSimplex(ref CachedSimplex simplex)
        {
            simplex.LocalSimplexA = SimplexA;
            switch (State)
            {
            case SimplexState.Point:
                Vector3f.Subtract(ref SimplexB.A, ref LocalTransformB.Position, out simplex.LocalSimplexB.A);
                Quaternion conjugate;
                Quaternion.Conjugate(ref LocalTransformB.Orientation, out conjugate);
                Vector3f.Transform(ref simplex.LocalSimplexB.A, ref conjugate, out simplex.LocalSimplexB.A);
                break;

            case SimplexState.Segment:
                Vector3f.Subtract(ref SimplexB.A, ref LocalTransformB.Position, out simplex.LocalSimplexB.A);
                Vector3f.Subtract(ref SimplexB.B, ref LocalTransformB.Position, out simplex.LocalSimplexB.B);

                Matrix3f transform;
                Matrix3f.FromQuaternion(ref LocalTransformB.Orientation, out transform);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.A, ref transform, out simplex.LocalSimplexB.A);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.B, ref transform, out simplex.LocalSimplexB.B);
                break;

            case SimplexState.Triangle:
                Vector3f.Subtract(ref SimplexB.A, ref LocalTransformB.Position, out simplex.LocalSimplexB.A);
                Vector3f.Subtract(ref SimplexB.B, ref LocalTransformB.Position, out simplex.LocalSimplexB.B);
                Vector3f.Subtract(ref SimplexB.C, ref LocalTransformB.Position, out simplex.LocalSimplexB.C);

                Matrix3f.FromQuaternion(ref LocalTransformB.Orientation, out transform);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.A, ref transform, out simplex.LocalSimplexB.A);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.B, ref transform, out simplex.LocalSimplexB.B);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.C, ref transform, out simplex.LocalSimplexB.C);
                break;

            case SimplexState.Tetrahedron:
                Vector3f.Subtract(ref SimplexB.A, ref LocalTransformB.Position, out simplex.LocalSimplexB.A);
                Vector3f.Subtract(ref SimplexB.B, ref LocalTransformB.Position, out simplex.LocalSimplexB.B);
                Vector3f.Subtract(ref SimplexB.C, ref LocalTransformB.Position, out simplex.LocalSimplexB.C);
                Vector3f.Subtract(ref SimplexB.D, ref LocalTransformB.Position, out simplex.LocalSimplexB.D);

                Matrix3f.FromQuaternion(ref LocalTransformB.Orientation, out transform);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.A, ref transform, out simplex.LocalSimplexB.A);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.B, ref transform, out simplex.LocalSimplexB.B);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.C, ref transform, out simplex.LocalSimplexB.C);
                Vector3f.TransformTranspose(ref simplex.LocalSimplexB.D, ref transform, out simplex.LocalSimplexB.D);
                break;
            }
            simplex.State = State;
        }
Example #3
0
        ///<summary>
        /// Gets the closest points between the shapes.
        ///</summary>
        ///<param name="shapeA">First shape of the pair.</param>
        ///<param name="shapeB">Second shape of the pair.</param>
        ///<param name="transformA">Transform to apply to the first shape.</param>
        ///<param name="transformB">Transform to apply to the second shape.</param>
        ///<param name="closestPointA">Closest point on the first shape to the second shape.</param>
        ///<param name="closestPointB">Closest point on the second shape to the first shape.</param>
        ///<returns>Whether or not the objects were intersecting.  If they are intersecting, then the closest points cannot be identified.</returns>
        public static bool GetClosestPoints(ConvexShape shapeA, ConvexShape shapeB, ref RigidTransform transformA, ref RigidTransform transformB,
                                            out Vector3f closestPointA, out Vector3f closestPointB)
        {
            //The cached simplex stores locations that are local to the shapes.  A fairly decent initial state is between the centroids of the objects.
            //In local space, the centroids are at the origins.

            RigidTransform localtransformB;

            MinkowskiToolbox.GetLocalTransform(ref transformA, ref transformB, out localtransformB);

            var simplex = new CachedSimplex {
                State = SimplexState.Point
            };
            // new CachedSimplex(shapeA, shapeB, ref localtransformB);
            bool toReturn = GetClosestPoints(shapeA, shapeB, ref localtransformB, ref simplex, out closestPointA, out closestPointB);

            RigidTransform.Transform(ref closestPointA, ref transformA, out closestPointA);
            RigidTransform.Transform(ref closestPointB, ref transformA, out closestPointB);
            return(toReturn);
        }
Example #4
0
        private static bool GetClosestPoints(ConvexShape shapeA, ConvexShape shapeB, ref RigidTransform localTransformB,
                                             ref CachedSimplex cachedSimplex, out Vector3f localClosestPointA, out Vector3f localClosestPointB)
        {
            var simplex = new PairSimplex(ref cachedSimplex, ref localTransformB);

            Vector3f closestPoint;
            int      count = 0;

            while (true)
            {
                if (simplex.GetPointClosestToOrigin(out closestPoint) || //Also reduces the simplex and computes barycentric coordinates if necessary.
                    closestPoint.LengthSquared <= MathHelper.Epsilon * simplex.errorTolerance)
                {
                    //Intersecting.
                    localClosestPointA = Toolbox.ZeroVector;
                    localClosestPointB = Toolbox.ZeroVector;

                    simplex.UpdateCachedSimplex(ref cachedSimplex);
                    return(true);
                }

                if (++count > MaximumGJKIterations)
                {
                    break; //Must break BEFORE a new vertex is added if we're over the iteration limit.  This guarantees final simplex is not a tetrahedron.
                }
                if (simplex.GetNewSimplexPoint(shapeA, shapeB, count, ref closestPoint))
                {
                    //No progress towards origin, not intersecting.
                    break;
                }
            }
            //Compute closest points from the contributing simplexes and barycentric coordinates
            simplex.GetClosestPoints(out localClosestPointA, out localClosestPointB);
            //simplex.VerifyContributions();
            //if (Vector3f.Distance(localClosestPointA - localClosestPointB, closestPoint) > .00001f)
            //    Debug.WriteLine("break.");
            simplex.UpdateCachedSimplex(ref cachedSimplex);
            return(false);
        }
Example #5
0
        ///<summary>
        /// Constructs a new pair simplex.
        ///</summary>
        ///<param name="cachedSimplex">Cached simplex to use to warmstart the simplex.</param>
        ///<param name="localTransformB">Transform of shape B in the local space of A.</param>
        public PairSimplex(ref CachedSimplex cachedSimplex, ref RigidTransform localTransformB)
        {
            //NOTE:
            //USING A CACHED SIMPLEX INVALIDATES ASSUMPTIONS THAT ALLOW SIMPLEX CASES TO BE IGNORED!
            //To get those assumptions back, either DO NOT USE CACHED SIMPLEXES, or
            //VERIFY THE SIMPLEXES.
            //-A point requires no verification.
            //-A segment needs verification that the origin is in front of A in the direction of B.
            //-A triangle needs verification that the origin is within the edge planes and in the direction of C.
            //-A tetrahedron needs verification that the origin is within the edge planes of triangle ABC and is in the direction of D.

            //This simplex implementation will not ignore any cases, so we can warm start safely with one problem.
            //Due to relative movement, the simplex may become degenerate.  Edges could become points, etc.
            //Some protections are built into the simplex cases, but keep an eye out for issues.
            //Most dangerous degeneracy seen so far is tetrahedron.  It fails to find any points on opposing sides due to numerical problems and returns intersection.


            previousDistanceToClosest = float.MaxValue;
            errorTolerance            = 0;
            LocalTransformB           = localTransformB;

            //Transform the SimplexB into the working space of the simplex and compute the working space simplex.
            State    = cachedSimplex.State;
            SimplexA = cachedSimplex.LocalSimplexA;
            SimplexB = new ContributingShapeSimplex();
            U        = 0;
            V        = 0;
            W        = 0;
            switch (State)
            {
            case SimplexState.Point:
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.A, ref LocalTransformB.Orientation, out SimplexB.A);
                Vector3f.Add(ref SimplexB.A, ref LocalTransformB.Position, out SimplexB.A);

                Vector3f.Subtract(ref SimplexA.A, ref SimplexB.A, out A);
                B = new Vector3f();
                C = new Vector3f();
                D = new Vector3f();
                break;

            case SimplexState.Segment:
                Matrix3f transform;
                Matrix3f.FromQuaternion(ref localTransformB.Orientation, out transform);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.A, ref transform, out SimplexB.A);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.B, ref transform, out SimplexB.B);
                Vector3f.Add(ref SimplexB.A, ref LocalTransformB.Position, out SimplexB.A);
                Vector3f.Add(ref SimplexB.B, ref LocalTransformB.Position, out SimplexB.B);

                Vector3f.Subtract(ref SimplexA.A, ref SimplexB.A, out A);
                Vector3f.Subtract(ref SimplexA.B, ref SimplexB.B, out B);
                C = new Vector3f();
                D = new Vector3f();

                ////Test for degeneracy.
                //float edgeLengthAB;
                //Vector3f.DistanceSquared(ref A, ref B, out edgeLengthAB);
                //if (edgeLengthAB < Toolbox.Epsilon)
                //    State = SimplexState.Point;

                break;

            case SimplexState.Triangle:
                Matrix3f.FromQuaternion(ref localTransformB.Orientation, out transform);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.A, ref transform, out SimplexB.A);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.B, ref transform, out SimplexB.B);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.C, ref transform, out SimplexB.C);
                Vector3f.Add(ref SimplexB.A, ref LocalTransformB.Position, out SimplexB.A);
                Vector3f.Add(ref SimplexB.B, ref LocalTransformB.Position, out SimplexB.B);
                Vector3f.Add(ref SimplexB.C, ref LocalTransformB.Position, out SimplexB.C);

                Vector3f.Subtract(ref SimplexA.A, ref SimplexB.A, out A);
                Vector3f.Subtract(ref SimplexA.B, ref SimplexB.B, out B);
                Vector3f.Subtract(ref SimplexA.C, ref SimplexB.C, out C);
                D = new Vector3f();

                ////Test for degeneracy.
                //Vector3f AB, AC;
                //Vector3f.Subtract(ref B, ref A, out AB);
                //Vector3f.Subtract(ref C, ref A, out AC);
                //Vector3f cross;
                //Vector3f.Cross(ref AB, ref AC, out cross);
                ////If the area is small compared to a tolerance (adjusted by the partial perimeter), it's degenerate.
                //if (cross.LengthSquared() < Toolbox.BigEpsilon * (AB.LengthSquared() + AC.LengthSquared()))
                //    State = SimplexState.Point;


                break;

            case SimplexState.Tetrahedron:
                Matrix3f.FromQuaternion(ref localTransformB.Orientation, out transform);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.A, ref transform, out SimplexB.A);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.B, ref transform, out SimplexB.B);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.C, ref transform, out SimplexB.C);
                Vector3f.Transform(ref cachedSimplex.LocalSimplexB.D, ref transform, out SimplexB.D);
                Vector3f.Add(ref SimplexB.A, ref LocalTransformB.Position, out SimplexB.A);
                Vector3f.Add(ref SimplexB.B, ref LocalTransformB.Position, out SimplexB.B);
                Vector3f.Add(ref SimplexB.C, ref LocalTransformB.Position, out SimplexB.C);
                Vector3f.Add(ref SimplexB.D, ref LocalTransformB.Position, out SimplexB.D);

                Vector3f.Subtract(ref SimplexA.A, ref SimplexB.A, out A);
                Vector3f.Subtract(ref SimplexA.B, ref SimplexB.B, out B);
                Vector3f.Subtract(ref SimplexA.C, ref SimplexB.C, out C);
                Vector3f.Subtract(ref SimplexA.D, ref SimplexB.D, out D);

                ////Test for degeneracy.
                //Vector3f AD;
                //Vector3f.Subtract(ref B, ref A, out AB);
                //Vector3f.Subtract(ref C, ref A, out AC);
                //Vector3f.Subtract(ref D, ref A, out AD);
                //Vector3f.Cross(ref AB, ref AC, out cross);
                //float volume;
                //Vector3f.Dot(ref cross, ref AD, out volume);

                ////Volume is small compared to partial 'perimeter.'
                //if (volume < Toolbox.BigEpsilon * (AB.LengthSquared() + AC.LengthSquared() + AD.LengthSquared()))
                //    State = SimplexState.Point;
                break;

            default:
                A = new Vector3f();
                B = new Vector3f();
                C = new Vector3f();
                D = new Vector3f();
                break;
            }
        }