The class implements back propagation learning algorithm, which is widely used for training multi-layer neural networks with continuous activation functions.
Sample usage (training network to calculate XOR function):
// initialize input and output values double[][] input = new double[4][] { new double[] {0, 0}, new double[] {0, 1}, new double[] {1, 0}, new double[] {1, 1} }; double[][] output = new double[4][] { new double[] {0}, new double[] {1}, new double[] {1}, new double[] {0} }; // create neural network ActivationNetwork network = new ActivationNetwork( SigmoidFunction( 2 ), 2, // two inputs in the network 2, // two neurons in the first layer 1 ); // one neuron in the second layer // create teacher BackPropagationLearning teacher = new BackPropagationLearning( network ); // loop while ( !needToStop ) { // run epoch of learning procedure double error = teacher.RunEpoch( input, output ); // check error value to see if we need to stop // ... }