ScanResults SecureDigital() { var results = new ScanResults(); byte[] cmdBuf; bool sense; results.Blocks = 0; const uint timeout = 5; double duration; const ushort sdProfile = 0x0001; ushort blocksToRead = 128; uint blockSize = 512; bool byteAddressed = true; bool supportsCmd23 = false; switch (_dev.Type) { case DeviceType.MMC: { sense = _dev.ReadCsd(out cmdBuf, out _, timeout, out _); if (!sense) { CSD csd = Decoders.MMC.Decoders.DecodeCSD(cmdBuf); results.Blocks = (ulong)((csd.Size + 1) * Math.Pow(2, csd.SizeMultiplier + 2)); blockSize = (uint)Math.Pow(2, csd.ReadBlockLength); // Found at least since MMC System Specification 3.31 supportsCmd23 = csd.Version >= 3; if (csd.Size == 0xFFF) { sense = _dev.ReadExtendedCsd(out cmdBuf, out _, timeout, out _); if (!sense) { ExtendedCSD ecsd = Decoders.MMC.Decoders.DecodeExtendedCSD(cmdBuf); results.Blocks = ecsd.SectorCount; blockSize = (uint)(ecsd.SectorSize == 1 ? 4096 : 512); blocksToRead = (ushort)(ecsd.OptimalReadSize * 4096 / blockSize); if (blocksToRead == 0) { blocksToRead = 128; } // Supposing it's high-capacity MMC if it has Extended CSD... byteAddressed = false; } } } break; } case DeviceType.SecureDigital: { sense = _dev.ReadCsd(out cmdBuf, out _, timeout, out _); if (!sense) { Decoders.SecureDigital.CSD csd = Decoders.SecureDigital.Decoders.DecodeCSD(cmdBuf); results.Blocks = (ulong)(csd.Structure == 0 ? (csd.Size + 1) * Math.Pow(2, csd.SizeMultiplier + 2) : (csd.Size + 1) * 1024); blockSize = (uint)Math.Pow(2, csd.ReadBlockLength); // Structure >=1 for SDHC/SDXC, so that's block addressed byteAddressed = csd.Structure == 0; if (blockSize != 512) { uint ratio = blockSize / 512; results.Blocks *= ratio; blockSize = 512; } sense = _dev.ReadScr(out cmdBuf, out _, timeout, out _); if (!sense) { supportsCmd23 = Decoders.SecureDigital.Decoders.DecodeSCR(cmdBuf)?.CommandSupport. HasFlag(CommandSupport.SetBlockCount) ?? false; } } break; } } if (results.Blocks == 0) { StoppingErrorMessage?.Invoke("Unable to get device size."); return(results); } if (supportsCmd23) { sense = _dev.ReadWithBlockCount(out cmdBuf, out _, 0, blockSize, 1, byteAddressed, timeout, out duration); if (sense || _dev.Error) { UpdateStatus?. Invoke("Environment does not support setting block count, downgrading to OS reading."); supportsCmd23 = false; } // Need to restart device, otherwise is it just busy streaming data with no one listening sense = _dev.ReOpen(); if (sense) { StoppingErrorMessage?.Invoke($"Error {_dev.LastError} reopening device."); return(results); } } if (supportsCmd23) { while (true) { sense = _dev.ReadWithBlockCount(out cmdBuf, out _, 0, blockSize, blocksToRead, byteAddressed, timeout, out duration); if (sense) { blocksToRead /= 2; } if (!sense || blocksToRead == 1) { break; } } if (sense) { StoppingErrorMessage?. Invoke($"Device error {_dev.LastError} trying to guess ideal transfer length."); return(results); } } results.A = 0; // <3ms results.B = 0; // >=3ms, <10ms results.C = 0; // >=10ms, <50ms results.D = 0; // >=50ms, <150ms results.E = 0; // >=150ms, <500ms results.F = 0; // >=500ms results.Errored = 0; DateTime start; DateTime end; results.ProcessingTime = 0; double currentSpeed = 0; results.MaxSpeed = double.MinValue; results.MinSpeed = double.MaxValue; results.UnreadableSectors = new List <ulong>(); results.SeekMax = double.MinValue; results.SeekMin = double.MaxValue; results.SeekTotal = 0; const int seekTimes = 100; var rnd = new Random(); if (supportsCmd23 || blocksToRead == 1) { UpdateStatus?.Invoke($"Reading {blocksToRead} sectors at a time."); } else if (_useBufferedReads) { UpdateStatus?.Invoke($"Reading {blocksToRead} sectors at a time using OS buffered reads."); } else { UpdateStatus?.Invoke($"Reading {blocksToRead} sectors using sequential single commands."); } InitBlockMap?.Invoke(results.Blocks, blockSize, blocksToRead, sdProfile); var mhddLog = new MhddLog(_mhddLogPath, _dev, results.Blocks, blockSize, blocksToRead, false); var ibgLog = new IbgLog(_ibgLogPath, sdProfile); start = DateTime.UtcNow; DateTime timeSpeedStart = DateTime.UtcNow; ulong sectorSpeedStart = 0; InitProgress?.Invoke(); for (ulong i = 0; i < results.Blocks; i += blocksToRead) { if (_aborted) { break; } if (results.Blocks - i < blocksToRead) { blocksToRead = (byte)(results.Blocks - i); } if (currentSpeed > results.MaxSpeed && currentSpeed > 0) { results.MaxSpeed = currentSpeed; } if (currentSpeed < results.MinSpeed && currentSpeed > 0) { results.MinSpeed = currentSpeed; } UpdateProgress?.Invoke($"Reading sector {i} of {results.Blocks} ({currentSpeed:F3} MiB/sec.)", (long)i, (long)results.Blocks); bool error; if (blocksToRead == 1) { error = _dev.ReadSingleBlock(out cmdBuf, out _, (uint)i, blockSize, byteAddressed, timeout, out duration); } else if (supportsCmd23) { error = _dev.ReadWithBlockCount(out cmdBuf, out _, (uint)i, blockSize, blocksToRead, byteAddressed, timeout, out duration); } else if (_useBufferedReads) { error = _dev.BufferedOsRead(out cmdBuf, (long)(i * blockSize), blockSize * blocksToRead, out duration); } else { error = _dev.ReadMultipleUsingSingle(out cmdBuf, out _, (uint)i, blockSize, blocksToRead, byteAddressed, timeout, out duration); } if (!error) { if (duration >= 500) { results.F += blocksToRead; } else if (duration >= 150) { results.E += blocksToRead; } else if (duration >= 50) { results.D += blocksToRead; } else if (duration >= 10) { results.C += blocksToRead; } else if (duration >= 3) { results.B += blocksToRead; } else { results.A += blocksToRead; } ScanTime?.Invoke(i, duration); mhddLog.Write(i, duration); ibgLog.Write(i, currentSpeed * 1024); } else { ScanUnreadable?.Invoke(i); results.Errored += blocksToRead; for (ulong b = i; b < i + blocksToRead; b++) { results.UnreadableSectors.Add(b); } mhddLog.Write(i, duration < 500 ? 65535 : duration); ibgLog.Write(i, 0); } sectorSpeedStart += blocksToRead; double elapsed = (DateTime.UtcNow - timeSpeedStart).TotalSeconds; if (elapsed < 1) { continue; } currentSpeed = sectorSpeedStart * blockSize / (1048576 * elapsed); ScanSpeed?.Invoke(i, currentSpeed * 1024); sectorSpeedStart = 0; timeSpeedStart = DateTime.UtcNow; } end = DateTime.UtcNow; EndProgress?.Invoke(); mhddLog.Close(); ibgLog.Close(_dev, results.Blocks, blockSize, (end - start).TotalSeconds, currentSpeed * 1024, blockSize * (double)(results.Blocks + 1) / 1024 / (results.ProcessingTime / 1000), _devicePath); InitProgress?.Invoke(); for (int i = 0; i < seekTimes; i++) { if (_aborted || !_seekTest) { break; } uint seekPos = (uint)rnd.Next((int)results.Blocks); PulseProgress?.Invoke($"Seeking to sector {seekPos}...\t\t"); _dev.ReadSingleBlock(out cmdBuf, out _, seekPos, blockSize, byteAddressed, timeout, out double seekCur); if (seekCur > results.SeekMax && seekCur > 0) { results.SeekMax = seekCur; } if (seekCur < results.SeekMin && seekCur > 0) { results.SeekMin = seekCur; } results.SeekTotal += seekCur; GC.Collect(); } EndProgress?.Invoke(); results.ProcessingTime /= 1000; results.TotalTime = (end - start).TotalSeconds; results.AvgSpeed = blockSize * (double)(results.Blocks + 1) / 1048576 / results.ProcessingTime; results.SeekTimes = seekTimes; return(results); }
public static string PrettifyCSD(CSD csd) { if (csd == null) { return(null); } double unitFactor = 0; double multiplier = 0; string unit = ""; var sb = new StringBuilder(); sb.AppendLine("MultiMediaCard Device Specific Data Register:"); switch (csd.Structure) { case 0: sb.AppendLine("\tRegister version 1.0"); break; case 1: sb.AppendLine("\tRegister version 1.1"); break; case 2: sb.AppendLine("\tRegister version 1.2"); break; case 3: sb.AppendLine("\tRegister version is defined in Extended Device Specific Data Register"); break; } switch (csd.TAAC & 0x07) { case 0: unit = "ns"; unitFactor = 1; break; case 1: unit = "ns"; unitFactor = 10; break; case 2: unit = "ns"; unitFactor = 100; break; case 3: unit = "μs"; unitFactor = 1; break; case 4: unit = "μs"; unitFactor = 10; break; case 5: unit = "μs"; unitFactor = 100; break; case 6: unit = "ms"; unitFactor = 1; break; case 7: unit = "ms"; unitFactor = 10; break; } switch ((csd.TAAC & 0x78) >> 3) { case 0: multiplier = 0; break; case 1: multiplier = 1; break; case 2: multiplier = 1.2; break; case 3: multiplier = 1.3; break; case 4: multiplier = 1.5; break; case 5: multiplier = 2; break; case 6: multiplier = 2.5; break; case 7: multiplier = 3; break; case 8: multiplier = 3.5; break; case 9: multiplier = 4; break; case 10: multiplier = 4.5; break; case 11: multiplier = 5; break; case 12: multiplier = 5.5; break; case 13: multiplier = 6; break; case 14: multiplier = 7; break; case 15: multiplier = 8; break; } double result = unitFactor * multiplier; sb.AppendFormat("\tAsynchronous data access time is {0}{1}", result, unit).AppendLine(); sb.AppendFormat("\tClock dependent part of data access is {0} clock cycles", csd.NSAC * 100).AppendLine(); unit = "MHz"; switch (csd.Speed & 0x07) { case 0: unitFactor = 0.1; break; case 1: unitFactor = 1; break; case 2: unitFactor = 10; break; case 3: unitFactor = 100; break; default: unit = "unknown"; unitFactor = 0; break; } switch ((csd.Speed & 0x78) >> 3) { case 0: multiplier = 0; break; case 1: multiplier = 1; break; case 2: multiplier = 1.2; break; case 3: multiplier = 1.3; break; case 4: multiplier = 1.5; break; case 5: multiplier = 2; break; case 6: multiplier = 2.6; break; case 7: multiplier = 3; break; case 8: multiplier = 3.5; break; case 9: multiplier = 4; break; case 10: multiplier = 4.5; break; case 11: multiplier = 5.2; break; case 12: multiplier = 5.5; break; case 13: multiplier = 6; break; case 14: multiplier = 7; break; case 15: multiplier = 8; break; } result = unitFactor * multiplier; sb.AppendFormat("\tDevice's clock frequency: {0}{1}", result, unit).AppendLine(); unit = ""; for (int cl = 0, mask = 1; cl <= 11; cl++, mask <<= 1) { if ((csd.Classes & mask) == mask) { unit += $" {cl}"; } } sb.AppendFormat("\tDevice support command classes {0}", unit).AppendLine(); if (csd.ReadBlockLength == 15) { sb.AppendLine("\tRead block length size is defined in extended CSD"); } else { sb.AppendFormat("\tRead block length is {0} bytes", Math.Pow(2, csd.ReadBlockLength)).AppendLine(); } if (csd.ReadsPartialBlocks) { sb.AppendLine("\tDevice allows reading partial blocks"); } if (csd.WriteMisalignment) { sb.AppendLine("\tWrite commands can cross physical block boundaries"); } if (csd.ReadMisalignment) { sb.AppendLine("\tRead commands can cross physical block boundaries"); } if (csd.DSRImplemented) { sb.AppendLine("\tDevice implements configurable driver stage"); } if (csd.Size == 0xFFF) { sb.AppendLine("\tDevice may be bigger than 2GiB and have its real size defined in the extended CSD"); } result = (csd.Size + 1) * Math.Pow(2, csd.SizeMultiplier + 2); sb.AppendFormat("\tDevice has {0} blocks", (int)result).AppendLine(); result = (csd.Size + 1) * Math.Pow(2, csd.SizeMultiplier + 2) * Math.Pow(2, csd.ReadBlockLength); if (result > 1073741824) { sb.AppendFormat("\tDevice has {0} GiB", result / 1073741824.0).AppendLine(); } else if (result > 1048576) { sb.AppendFormat("\tDevice has {0} MiB", result / 1048576.0).AppendLine(); } else if (result > 1024) { sb.AppendFormat("\tDevice has {0} KiB", result / 1024.0).AppendLine(); } else { sb.AppendFormat("\tDevice has {0} bytes", result).AppendLine(); } switch (csd.ReadCurrentAtVddMin & 0x07) { case 0: sb.AppendLine("\tDevice uses a maximum of 0.5mA for reading at minimum voltage"); break; case 1: sb.AppendLine("\tDevice uses a maximum of 1mA for reading at minimum voltage"); break; case 2: sb.AppendLine("\tDevice uses a maximum of 5mA for reading at minimum voltage"); break; case 3: sb.AppendLine("\tDevice uses a maximum of 10mA for reading at minimum voltage"); break; case 4: sb.AppendLine("\tDevice uses a maximum of 25mA for reading at minimum voltage"); break; case 5: sb.AppendLine("\tDevice uses a maximum of 35mA for reading at minimum voltage"); break; case 6: sb.AppendLine("\tDevice uses a maximum of 60mA for reading at minimum voltage"); break; case 7: sb.AppendLine("\tDevice uses a maximum of 100mA for reading at minimum voltage"); break; } switch (csd.ReadCurrentAtVddMax & 0x07) { case 0: sb.AppendLine("\tDevice uses a maximum of 1mA for reading at maximum voltage"); break; case 1: sb.AppendLine("\tDevice uses a maximum of 5mA for reading at maximum voltage"); break; case 2: sb.AppendLine("\tDevice uses a maximum of 10mA for reading at maximum voltage"); break; case 3: sb.AppendLine("\tDevice uses a maximum of 25mA for reading at maximum voltage"); break; case 4: sb.AppendLine("\tDevice uses a maximum of 35mA for reading at maximum voltage"); break; case 5: sb.AppendLine("\tDevice uses a maximum of 45mA for reading at maximum voltage"); break; case 6: sb.AppendLine("\tDevice uses a maximum of 80mA for reading at maximum voltage"); break; case 7: sb.AppendLine("\tDevice uses a maximum of 200mA for reading at maximum voltage"); break; } switch (csd.WriteCurrentAtVddMin & 0x07) { case 0: sb.AppendLine("\tDevice uses a maximum of 0.5mA for writing at minimum voltage"); break; case 1: sb.AppendLine("\tDevice uses a maximum of 1mA for writing at minimum voltage"); break; case 2: sb.AppendLine("\tDevice uses a maximum of 5mA for writing at minimum voltage"); break; case 3: sb.AppendLine("\tDevice uses a maximum of 10mA for writing at minimum voltage"); break; case 4: sb.AppendLine("\tDevice uses a maximum of 25mA for writing at minimum voltage"); break; case 5: sb.AppendLine("\tDevice uses a maximum of 35mA for writing at minimum voltage"); break; case 6: sb.AppendLine("\tDevice uses a maximum of 60mA for writing at minimum voltage"); break; case 7: sb.AppendLine("\tDevice uses a maximum of 100mA for writing at minimum voltage"); break; } switch (csd.WriteCurrentAtVddMax & 0x07) { case 0: sb.AppendLine("\tDevice uses a maximum of 1mA for writing at maximum voltage"); break; case 1: sb.AppendLine("\tDevice uses a maximum of 5mA for writing at maximum voltage"); break; case 2: sb.AppendLine("\tDevice uses a maximum of 10mA for writing at maximum voltage"); break; case 3: sb.AppendLine("\tDevice uses a maximum of 25mA for writing at maximum voltage"); break; case 4: sb.AppendLine("\tDevice uses a maximum of 35mA for writing at maximum voltage"); break; case 5: sb.AppendLine("\tDevice uses a maximum of 45mA for writing at maximum voltage"); break; case 6: sb.AppendLine("\tDevice uses a maximum of 80mA for writing at maximum voltage"); break; case 7: sb.AppendLine("\tDevice uses a maximum of 200mA for writing at maximum voltage"); break; } // TODO: Check specification unitFactor = Convert.ToDouble(csd.EraseGroupSize); multiplier = Convert.ToDouble(csd.EraseGroupSizeMultiplier); result = (unitFactor + 1) * (multiplier + 1); sb.AppendFormat("\tDevice can erase a minimum of {0} blocks at a time", (int)result).AppendLine(); if (csd.WriteProtectGroupEnable) { sb.AppendLine("\tDevice can write protect regions"); // TODO: Check specification // unitFactor = Convert.ToDouble(csd.WriteProtectGroupSize); sb.AppendFormat("\tDevice can write protect a minimum of {0} blocks at a time", (int)(result + 1)). AppendLine(); } else { sb.AppendLine("\tDevice can't write protect regions"); } switch (csd.DefaultECC) { case 0: sb.AppendLine("\tDevice uses no ECC by default"); break; case 1: sb.AppendLine("\tDevice uses BCH(542, 512) ECC by default"); break; case 2: sb.AppendFormat("\tDevice uses unknown ECC code {0} by default", csd.DefaultECC).AppendLine(); break; } sb.AppendFormat("\tWriting is {0} times slower than reading", Math.Pow(2, csd.WriteSpeedFactor)). AppendLine(); if (csd.WriteBlockLength == 15) { sb.AppendLine("\tWrite block length size is defined in extended CSD"); } else { sb.AppendFormat("\tWrite block length is {0} bytes", Math.Pow(2, csd.WriteBlockLength)).AppendLine(); } if (csd.WritesPartialBlocks) { sb.AppendLine("\tDevice allows writing partial blocks"); } if (csd.ContentProtection) { sb.AppendLine("\tDevice supports content protection"); } if (!csd.Copy) { sb.AppendLine("\tDevice contents are original"); } if (csd.PermanentWriteProtect) { sb.AppendLine("\tDevice is permanently write protected"); } if (csd.TemporaryWriteProtect) { sb.AppendLine("\tDevice is temporarily write protected"); } if (!csd.FileFormatGroup) { switch (csd.FileFormat) { case 0: sb.AppendLine("\tDevice is formatted like a hard disk"); break; case 1: sb.AppendLine("\tDevice is formatted like a floppy disk using Microsoft FAT"); break; case 2: sb.AppendLine("\tDevice uses Universal File Format"); break; default: sb.AppendFormat("\tDevice uses unknown file format code {0}", csd.FileFormat).AppendLine(); break; } } else { sb.AppendFormat("\tDevice uses unknown file format code {0} and file format group 1", csd.FileFormat). AppendLine(); } switch (csd.ECC) { case 0: sb.AppendLine("\tDevice currently uses no ECC"); break; case 1: sb.AppendLine("\tDevice currently uses BCH(542, 512) ECC by default"); break; case 2: sb.AppendFormat("\tDevice currently uses unknown ECC code {0}", csd.DefaultECC).AppendLine(); break; } sb.AppendFormat("\tCSD CRC: 0x{0:X2}", csd.CRC).AppendLine(); return(sb.ToString()); }
/// <summary>Dumps a MultiMediaCard or SecureDigital flash card</summary> void SecureDigital() { if (_dumpRaw) { if (_force) { ErrorMessage?. Invoke("Raw dumping is not supported in MultiMediaCard or SecureDigital devices. Continuing..."); } else { StoppingErrorMessage?. Invoke("Raw dumping is not supported in MultiMediaCard or SecureDigital devices. Aborting..."); return; } } bool sense; const ushort sdProfile = 0x0001; const uint timeout = 5; double duration; ushort blocksToRead = 128; uint blockSize = 512; ulong blocks = 0; byte[] csd = null; byte[] ocr = null; byte[] ecsd = null; byte[] scr = null; uint physicalBlockSize = 0; bool byteAddressed = true; uint[] response; bool supportsCmd23 = false; Dictionary <MediaTagType, byte[]> mediaTags = new Dictionary <MediaTagType, byte[]>(); switch (_dev.Type) { case DeviceType.MMC: { UpdateStatus?.Invoke("Reading CSD"); _dumpLog.WriteLine("Reading CSD"); sense = _dev.ReadCsd(out csd, out response, timeout, out duration); if (!sense) { CSD csdDecoded = Decoders.MMC.Decoders.DecodeCSD(csd); blocks = (ulong)((csdDecoded.Size + 1) * Math.Pow(2, csdDecoded.SizeMultiplier + 2)); blockSize = (uint)Math.Pow(2, csdDecoded.ReadBlockLength); mediaTags.Add(MediaTagType.MMC_CSD, null); // Found at least since MMC System Specification 3.31 supportsCmd23 = csdDecoded.Version >= 3; if (csdDecoded.Size == 0xFFF) { UpdateStatus?.Invoke("Reading Extended CSD"); _dumpLog.WriteLine("Reading Extended CSD"); sense = _dev.ReadExtendedCsd(out ecsd, out response, timeout, out duration); if (!sense) { ExtendedCSD ecsdDecoded = Decoders.MMC.Decoders.DecodeExtendedCSD(ecsd); blocks = ecsdDecoded.SectorCount; blockSize = (uint)(ecsdDecoded.SectorSize == 1 ? 4096 : 512); if (ecsdDecoded.NativeSectorSize == 0) { physicalBlockSize = 512; } else if (ecsdDecoded.NativeSectorSize == 1) { physicalBlockSize = 4096; } blocksToRead = (ushort)(ecsdDecoded.OptimalReadSize * 4096 / blockSize); if (blocksToRead == 0) { blocksToRead = 128; } // Supposing it's high-capacity MMC if it has Extended CSD... byteAddressed = false; mediaTags.Add(MediaTagType.MMC_ExtendedCSD, null); } else { _errorLog?.WriteLine("Read eCSD", _dev.Error, _dev.LastError, response); ecsd = null; } } } else { _errorLog?.WriteLine("Read CSD", _dev.Error, _dev.LastError, response); csd = null; } UpdateStatus?.Invoke("Reading OCR"); _dumpLog.WriteLine("Reading OCR"); sense = _dev.ReadOcr(out ocr, out response, timeout, out duration); if (sense) { _errorLog?.WriteLine("Read OCR", _dev.Error, _dev.LastError, response); ocr = null; } else { mediaTags.Add(MediaTagType.MMC_OCR, null); } break; } case DeviceType.SecureDigital: { UpdateStatus?.Invoke("Reading CSD"); _dumpLog.WriteLine("Reading CSD"); sense = _dev.ReadCsd(out csd, out response, timeout, out duration); if (!sense) { Decoders.SecureDigital.CSD csdDecoded = Decoders.SecureDigital.Decoders.DecodeCSD(csd); blocks = (ulong)(csdDecoded.Structure == 0 ? (csdDecoded.Size + 1) * Math.Pow(2, csdDecoded.SizeMultiplier + 2) : (csdDecoded.Size + 1) * 1024); blockSize = (uint)Math.Pow(2, csdDecoded.ReadBlockLength); // Structure >=1 for SDHC/SDXC, so that's block addressed byteAddressed = csdDecoded.Structure == 0; mediaTags.Add(MediaTagType.SD_CSD, null); physicalBlockSize = blockSize; if (blockSize != 512) { uint ratio = blockSize / 512; blocks *= ratio; blockSize = 512; } } else { _errorLog?.WriteLine("Read CSD", _dev.Error, _dev.LastError, response); csd = null; } UpdateStatus?.Invoke("Reading OCR"); _dumpLog.WriteLine("Reading OCR"); sense = _dev.ReadSdocr(out ocr, out response, timeout, out duration); if (sense) { _errorLog?.WriteLine("Read OCR", _dev.Error, _dev.LastError, response); ocr = null; } else { mediaTags.Add(MediaTagType.SD_OCR, null); } UpdateStatus?.Invoke("Reading SCR"); _dumpLog.WriteLine("Reading SCR"); sense = _dev.ReadScr(out scr, out response, timeout, out duration); if (sense) { _errorLog?.WriteLine("Read SCR", _dev.Error, _dev.LastError, response); scr = null; } else { supportsCmd23 = Decoders.SecureDigital.Decoders.DecodeSCR(scr)?.CommandSupport. HasFlag(CommandSupport.SetBlockCount) ?? false; mediaTags.Add(MediaTagType.SD_SCR, null); } break; } } UpdateStatus?.Invoke("Reading CID"); _dumpLog.WriteLine("Reading CID"); sense = _dev.ReadCid(out byte[] cid, out response, timeout, out duration); if (sense) { _errorLog?.WriteLine("Read CID", _dev.Error, _dev.LastError, response); cid = null; } else { mediaTags.Add(_dev.Type == DeviceType.SecureDigital ? MediaTagType.SD_CID : MediaTagType.MMC_CID, null); } DateTime start; DateTime end; double totalDuration = 0; double currentSpeed = 0; double maxSpeed = double.MinValue; double minSpeed = double.MaxValue; if (blocks == 0) { _dumpLog.WriteLine("Unable to get device size."); StoppingErrorMessage?.Invoke("Unable to get device size."); return; } UpdateStatus?.Invoke($"Device reports {blocks} blocks."); _dumpLog.WriteLine("Device reports {0} blocks.", blocks); byte[] cmdBuf; bool error; if (blocksToRead > _maximumReadable) { blocksToRead = (ushort)_maximumReadable; } if (supportsCmd23 && blocksToRead > 1) { sense = _dev.ReadWithBlockCount(out cmdBuf, out _, 0, blockSize, 1, byteAddressed, timeout, out duration); if (sense || _dev.Error) { supportsCmd23 = false; } // Need to restart device, otherwise is it just busy streaming data with no one listening sense = _dev.ReOpen(); if (sense) { StoppingErrorMessage?.Invoke($"Error {_dev.LastError} reopening device."); return; } } if (supportsCmd23 && blocksToRead > 1) { while (true) { error = _dev.ReadWithBlockCount(out cmdBuf, out _, 0, blockSize, blocksToRead, byteAddressed, timeout, out duration); if (error) { blocksToRead /= 2; } if (!error || blocksToRead == 1) { break; } } if (error) { _dumpLog.WriteLine("ERROR: Cannot get blocks to read, device error {0}.", _dev.LastError); StoppingErrorMessage?. Invoke($"Device error {_dev.LastError} trying to guess ideal transfer length."); return; } } if (supportsCmd23 || blocksToRead == 1) { UpdateStatus?.Invoke($"Device can read {blocksToRead} blocks at a time."); _dumpLog.WriteLine("Device can read {0} blocks at a time.", blocksToRead); } else if (_useBufferedReads) { UpdateStatus?.Invoke($"Device can read {blocksToRead} blocks at a time using OS buffered reads."); _dumpLog.WriteLine("Device can read {0} blocks at a time using OS buffered reads.", blocksToRead); } else { UpdateStatus?.Invoke($"Device can read {blocksToRead} blocks using sequential commands."); _dumpLog.WriteLine("Device can read {0} blocks using sequential commands.", blocksToRead); } if (_skip < blocksToRead) { _skip = blocksToRead; } DumpHardwareType currentTry = null; ExtentsULong extents = null; ResumeSupport.Process(true, false, blocks, _dev.Manufacturer, _dev.Model, _dev.Serial, _dev.PlatformId, ref _resume, ref currentTry, ref extents, _dev.FirmwareRevision, _private); if (currentTry == null || extents == null) { StoppingErrorMessage?.Invoke("Could not process resume file, not continuing..."); return; } bool ret = true; foreach (MediaTagType tag in mediaTags.Keys.Where(tag => !_outputPlugin.SupportedMediaTags.Contains(tag))) { ret = false; _dumpLog.WriteLine($"Output format does not support {tag}."); ErrorMessage?.Invoke($"Output format does not support {tag}."); } if (!ret) { if (_force) { _dumpLog.WriteLine("Several media tags not supported, continuing..."); ErrorMessage?.Invoke("Several media tags not supported, continuing..."); } else { _dumpLog.WriteLine("Several media tags not supported, not continuing..."); StoppingErrorMessage?.Invoke("Several media tags not supported, not continuing..."); return; } } var mhddLog = new MhddLog(_outputPrefix + ".mhddlog.bin", _dev, blocks, blockSize, blocksToRead, _private); var ibgLog = new IbgLog(_outputPrefix + ".ibg", sdProfile); ret = _outputPlugin.Create(_outputPath, _dev.Type == DeviceType.SecureDigital ? MediaType.SecureDigital : MediaType.MMC, _formatOptions, blocks, blockSize); // Cannot create image if (!ret) { _dumpLog.WriteLine("Error creating output image, not continuing."); _dumpLog.WriteLine(_outputPlugin.ErrorMessage); StoppingErrorMessage?.Invoke("Error creating output image, not continuing." + Environment.NewLine + _outputPlugin.ErrorMessage); return; } if (cid != null) { if (_dev.Type == DeviceType.SecureDigital && _private) { // Clear serial number and manufacturing date cid[9] = 0; cid[10] = 0; cid[11] = 0; cid[12] = 0; cid[13] = 0; cid[14] = 0; } else if (_dev.Type == DeviceType.MMC && _private) { // Clear serial number and manufacturing date cid[10] = 0; cid[11] = 0; cid[12] = 0; cid[13] = 0; cid[14] = 0; } ret = _outputPlugin.WriteMediaTag(cid, _dev.Type == DeviceType.SecureDigital ? MediaTagType.SD_CID : MediaTagType.MMC_CID); // Cannot write CID to image if (!ret && !_force) { _dumpLog.WriteLine("Cannot write CID to output image."); StoppingErrorMessage?.Invoke("Cannot write CID to output image." + Environment.NewLine + _outputPlugin.ErrorMessage); return; } } if (csd != null) { ret = _outputPlugin.WriteMediaTag(csd, _dev.Type == DeviceType.SecureDigital ? MediaTagType.SD_CSD : MediaTagType.MMC_CSD); // Cannot write CSD to image if (!ret && !_force) { _dumpLog.WriteLine("Cannot write CSD to output image."); StoppingErrorMessage?.Invoke("Cannot write CSD to output image." + Environment.NewLine + _outputPlugin.ErrorMessage); return; } } if (ecsd != null) { ret = _outputPlugin.WriteMediaTag(ecsd, MediaTagType.MMC_ExtendedCSD); // Cannot write Extended CSD to image if (!ret && !_force) { _dumpLog.WriteLine("Cannot write Extended CSD to output image."); StoppingErrorMessage?.Invoke("Cannot write Extended CSD to output image." + Environment.NewLine + _outputPlugin.ErrorMessage); return; } } if (ocr != null) { ret = _outputPlugin.WriteMediaTag(ocr, _dev.Type == DeviceType.SecureDigital ? MediaTagType.SD_OCR : MediaTagType.MMC_OCR); // Cannot write OCR to image if (!ret && !_force) { _dumpLog.WriteLine("Cannot write OCR to output image."); StoppingErrorMessage?.Invoke("Cannot write OCR to output image." + Environment.NewLine + _outputPlugin.ErrorMessage); return; } } if (scr != null) { ret = _outputPlugin.WriteMediaTag(scr, MediaTagType.SD_SCR); // Cannot write SCR to image if (!ret && !_force) { _dumpLog.WriteLine("Cannot write SCR to output image."); StoppingErrorMessage?.Invoke("Cannot write SCR to output image." + Environment.NewLine + _outputPlugin.ErrorMessage); return; } } if (_resume.NextBlock > 0) { UpdateStatus?.Invoke($"Resuming from block {_resume.NextBlock}."); _dumpLog.WriteLine("Resuming from block {0}.", _resume.NextBlock); } start = DateTime.UtcNow; double imageWriteDuration = 0; bool newTrim = false; DateTime timeSpeedStart = DateTime.UtcNow; ulong sectorSpeedStart = 0; InitProgress?.Invoke(); for (ulong i = _resume.NextBlock; i < blocks; i += blocksToRead) { if (_aborted) { currentTry.Extents = ExtentsConverter.ToMetadata(extents); UpdateStatus?.Invoke("Aborted!"); _dumpLog.WriteLine("Aborted!"); break; } if (blocks - i < blocksToRead) { blocksToRead = (byte)(blocks - i); } if (currentSpeed > maxSpeed && currentSpeed > 0) { maxSpeed = currentSpeed; } if (currentSpeed < minSpeed && currentSpeed > 0) { minSpeed = currentSpeed; } UpdateProgress?.Invoke($"Reading sector {i} of {blocks} ({currentSpeed:F3} MiB/sec.)", (long)i, (long)blocks); if (blocksToRead == 1) { error = _dev.ReadSingleBlock(out cmdBuf, out _, (uint)i, blockSize, byteAddressed, timeout, out duration); } else if (supportsCmd23) { error = _dev.ReadWithBlockCount(out cmdBuf, out _, (uint)i, blockSize, blocksToRead, byteAddressed, timeout, out duration); } else if (_useBufferedReads) { error = _dev.BufferedOsRead(out cmdBuf, (long)(i * blockSize), blockSize * blocksToRead, out duration); } else { error = _dev.ReadMultipleUsingSingle(out cmdBuf, out _, (uint)i, blockSize, blocksToRead, byteAddressed, timeout, out duration); } if (!error) { mhddLog.Write(i, duration); ibgLog.Write(i, currentSpeed * 1024); DateTime writeStart = DateTime.Now; _outputPlugin.WriteSectors(cmdBuf, i, blocksToRead); imageWriteDuration += (DateTime.Now - writeStart).TotalSeconds; extents.Add(i, blocksToRead, true); } else { _errorLog?.WriteLine(i, _dev.Error, _dev.LastError, byteAddressed, response); if (i + _skip > blocks) { _skip = (uint)(blocks - i); } for (ulong b = i; b < i + _skip; b++) { _resume.BadBlocks.Add(b); } mhddLog.Write(i, duration < 500 ? 65535 : duration); ibgLog.Write(i, 0); DateTime writeStart = DateTime.Now; _outputPlugin.WriteSectors(new byte[blockSize * _skip], i, _skip); imageWriteDuration += (DateTime.Now - writeStart).TotalSeconds; _dumpLog.WriteLine("Skipping {0} blocks from errored block {1}.", _skip, i); i += _skip - blocksToRead; newTrim = true; } sectorSpeedStart += blocksToRead; _resume.NextBlock = i + blocksToRead; double elapsed = (DateTime.UtcNow - timeSpeedStart).TotalSeconds; if (elapsed < 1) { continue; } currentSpeed = sectorSpeedStart * blockSize / (1048576 * elapsed); sectorSpeedStart = 0; timeSpeedStart = DateTime.UtcNow; } _resume.BadBlocks = _resume.BadBlocks.Distinct().ToList(); end = DateTime.Now; EndProgress?.Invoke(); mhddLog.Close(); ibgLog.Close(_dev, blocks, blockSize, (end - start).TotalSeconds, currentSpeed * 1024, blockSize * (double)(blocks + 1) / 1024 / (totalDuration / 1000), _devicePath); UpdateStatus?.Invoke($"Dump finished in {(end - start).TotalSeconds} seconds."); UpdateStatus?. Invoke($"Average dump speed {(double)blockSize * (double)(blocks + 1) / 1024 / (totalDuration / 1000):F3} KiB/sec."); UpdateStatus?. Invoke($"Average write speed {(double)blockSize * (double)(blocks + 1) / 1024 / imageWriteDuration:F3} KiB/sec."); _dumpLog.WriteLine("Dump finished in {0} seconds.", (end - start).TotalSeconds); _dumpLog.WriteLine("Average dump speed {0:F3} KiB/sec.", (double)blockSize * (double)(blocks + 1) / 1024 / (totalDuration / 1000)); _dumpLog.WriteLine("Average write speed {0:F3} KiB/sec.", (double)blockSize * (double)(blocks + 1) / 1024 / imageWriteDuration); #region Trimming if (_resume.BadBlocks.Count > 0 && !_aborted && _trim && newTrim) { start = DateTime.UtcNow; UpdateStatus?.Invoke("Trimming skipped sectors"); _dumpLog.WriteLine("Trimming skipped sectors"); ulong[] tmpArray = _resume.BadBlocks.ToArray(); InitProgress?.Invoke(); foreach (ulong badSector in tmpArray) { if (_aborted) { currentTry.Extents = ExtentsConverter.ToMetadata(extents); UpdateStatus?.Invoke("Aborted!"); _dumpLog.WriteLine("Aborted!"); break; } PulseProgress?.Invoke($"Trimming sector {badSector}"); error = _dev.ReadSingleBlock(out cmdBuf, out response, (uint)badSector, blockSize, byteAddressed, timeout, out duration); totalDuration += duration; if (error) { _errorLog?.WriteLine(badSector, _dev.Error, _dev.LastError, byteAddressed, response); continue; } _resume.BadBlocks.Remove(badSector); extents.Add(badSector); _outputPlugin.WriteSector(cmdBuf, badSector); } EndProgress?.Invoke(); end = DateTime.UtcNow; UpdateStatus?.Invoke($"Trimming finished in {(end - start).TotalSeconds} seconds."); _dumpLog.WriteLine("Trimming finished in {0} seconds.", (end - start).TotalSeconds); } #endregion Trimming #region Error handling if (_resume.BadBlocks.Count > 0 && !_aborted && _retryPasses > 0) { int pass = 1; bool forward = true; bool runningPersistent = false; InitProgress?.Invoke(); repeatRetryLba: ulong[] tmpArray = _resume.BadBlocks.ToArray(); foreach (ulong badSector in tmpArray) { if (_aborted) { currentTry.Extents = ExtentsConverter.ToMetadata(extents); UpdateStatus?.Invoke("Aborted!"); _dumpLog.WriteLine("Aborted!"); break; } PulseProgress?.Invoke(string.Format("Retrying sector {0}, pass {1}, {3}{2}", badSector, pass, forward ? "forward" : "reverse", runningPersistent ? "recovering partial data, " : "")); error = _dev.ReadSingleBlock(out cmdBuf, out response, (uint)badSector, blockSize, byteAddressed, timeout, out duration); totalDuration += duration; if (error) { _errorLog?.WriteLine(badSector, _dev.Error, _dev.LastError, byteAddressed, response); } if (!error) { _resume.BadBlocks.Remove(badSector); extents.Add(badSector); _outputPlugin.WriteSector(cmdBuf, badSector); UpdateStatus?.Invoke($"Correctly retried block {badSector} in pass {pass}."); _dumpLog.WriteLine("Correctly retried block {0} in pass {1}.", badSector, pass); } else if (runningPersistent) { _outputPlugin.WriteSector(cmdBuf, badSector); } } if (pass < _retryPasses && !_aborted && _resume.BadBlocks.Count > 0) { pass++; forward = !forward; _resume.BadBlocks.Sort(); if (!forward) { _resume.BadBlocks.Reverse(); } goto repeatRetryLba; } EndProgress?.Invoke(); } #endregion Error handling currentTry.Extents = ExtentsConverter.ToMetadata(extents); _outputPlugin.SetDumpHardware(_resume.Tries); // TODO: Drive info var metadata = new CommonTypes.Structs.ImageInfo { Application = "Aaru", ApplicationVersion = Version.GetVersion() }; if (!_outputPlugin.SetMetadata(metadata)) { ErrorMessage?.Invoke("Error {0} setting metadata, continuing..." + Environment.NewLine + _outputPlugin.ErrorMessage); } if (_preSidecar != null) { _outputPlugin.SetCicmMetadata(_preSidecar); } _dumpLog.WriteLine("Closing output file."); UpdateStatus?.Invoke("Closing output file."); DateTime closeStart = DateTime.Now; _outputPlugin.Close(); DateTime closeEnd = DateTime.Now; UpdateStatus?.Invoke($"Closed in {(closeEnd - closeStart).TotalSeconds} seconds."); _dumpLog.WriteLine("Closed in {0} seconds.", (closeEnd - closeStart).TotalSeconds); if (_aborted) { UpdateStatus?.Invoke("Aborted!"); _dumpLog.WriteLine("Aborted!"); return; } double totalChkDuration = 0; if (_metadata) { UpdateStatus?.Invoke("Creating sidecar."); _dumpLog.WriteLine("Creating sidecar."); var filters = new FiltersList(); IFilter filter = filters.GetFilter(_outputPath); IMediaImage inputPlugin = ImageFormat.Detect(filter); if (!inputPlugin.Open(filter)) { StoppingErrorMessage?.Invoke("Could not open created image."); } DateTime chkStart = DateTime.UtcNow; _sidecarClass = new Sidecar(inputPlugin, _outputPath, filter.Id, _encoding); _sidecarClass.InitProgressEvent += InitProgress; _sidecarClass.UpdateProgressEvent += UpdateProgress; _sidecarClass.EndProgressEvent += EndProgress; _sidecarClass.InitProgressEvent2 += InitProgress2; _sidecarClass.UpdateProgressEvent2 += UpdateProgress2; _sidecarClass.EndProgressEvent2 += EndProgress2; _sidecarClass.UpdateStatusEvent += UpdateStatus; CICMMetadataType sidecar = _sidecarClass.Create(); if (_preSidecar != null) { _preSidecar.BlockMedia = sidecar.BlockMedia; sidecar = _preSidecar; } end = DateTime.UtcNow; totalChkDuration = (end - chkStart).TotalMilliseconds; UpdateStatus?.Invoke($"Sidecar created in {(end - chkStart).TotalSeconds} seconds."); UpdateStatus?. Invoke($"Average checksum speed {(double)blockSize * (double)(blocks + 1) / 1024 / (totalChkDuration / 1000):F3} KiB/sec."); _dumpLog.WriteLine("Sidecar created in {0} seconds.", (end - chkStart).TotalSeconds); _dumpLog.WriteLine("Average checksum speed {0:F3} KiB/sec.", (double)blockSize * (double)(blocks + 1) / 1024 / (totalChkDuration / 1000)); (string type, string subType)xmlType = (null, null); switch (_dev.Type) { case DeviceType.MMC: xmlType = CommonTypes.Metadata.MediaType.MediaTypeToString(MediaType.MMC); sidecar.BlockMedia[0].Dimensions = Dimensions.DimensionsFromMediaType(MediaType.MMC); break; case DeviceType.SecureDigital: CommonTypes.Metadata.MediaType.MediaTypeToString(MediaType.SecureDigital); sidecar.BlockMedia[0].Dimensions = Dimensions.DimensionsFromMediaType(MediaType.SecureDigital); break; } sidecar.BlockMedia[0].DiskType = xmlType.type; sidecar.BlockMedia[0].DiskSubType = xmlType.subType; // TODO: Implement device firmware revision sidecar.BlockMedia[0].LogicalBlocks = blocks; sidecar.BlockMedia[0].PhysicalBlockSize = physicalBlockSize > 0 ? physicalBlockSize : blockSize; sidecar.BlockMedia[0].LogicalBlockSize = blockSize; sidecar.BlockMedia[0].Manufacturer = _dev.Manufacturer; sidecar.BlockMedia[0].Model = _dev.Model; if (!_private) { sidecar.BlockMedia[0].Serial = _dev.Serial; } sidecar.BlockMedia[0].Size = blocks * blockSize; UpdateStatus?.Invoke("Writing metadata sidecar"); var xmlFs = new FileStream(_outputPrefix + ".cicm.xml", FileMode.Create); var xmlSer = new XmlSerializer(typeof(CICMMetadataType)); xmlSer.Serialize(xmlFs, sidecar); xmlFs.Close(); } UpdateStatus?.Invoke(""); UpdateStatus?. Invoke($"Took a total of {(end - start).TotalSeconds:F3} seconds ({totalDuration / 1000:F3} processing commands, {totalChkDuration / 1000:F3} checksumming, {imageWriteDuration:F3} writing, {(closeEnd - closeStart).TotalSeconds:F3} closing)."); UpdateStatus?. Invoke($"Average speed: {(double)blockSize * (double)(blocks + 1) / 1048576 / (totalDuration / 1000):F3} MiB/sec."); if (maxSpeed > 0) { UpdateStatus?.Invoke($"Fastest speed burst: {maxSpeed:F3} MiB/sec."); } if (minSpeed > 0 && minSpeed < double.MaxValue) { UpdateStatus?.Invoke($"Slowest speed burst: {minSpeed:F3} MiB/sec."); } UpdateStatus?.Invoke($"{_resume.BadBlocks.Count} sectors could not be read."); UpdateStatus?.Invoke(""); if (_resume.BadBlocks.Count > 0) { _resume.BadBlocks.Sort(); } switch (_dev.Type) { case DeviceType.MMC: Statistics.AddMedia(MediaType.MMC, true); break; case DeviceType.SecureDigital: Statistics.AddMedia(MediaType.SecureDigital, true); break; } }