Example #1
0
        /// <summary>
        /// Finds minimum of functions by transforming it to form solvable by Hooke-Jeeves algorithm.
        /// </summary>
        /// <param name="implicitRestrictions">List of implicit restrictions.</param>
        /// <param name="function">Function used in algorithm.</param>
        /// <param name="t">Parameter of transformation.</param>
        /// <param name="e">Precision.</param>
        /// <param name="startingPoint">Starting point of algorithm.</param>
        /// <param name="epsilon">Precision used in Hooke-Jeeves method.</param>
        /// <param name="deltaX">Step used for calculating new point.</param>
        /// <param name="iterations">Number of iterations of algorithm.</param>
        /// <returns>Minimum of function.</returns>

        public static Matrica FindMinimum(List <RestrictionExpression> implicitRestrictions, Function function, double t, double e, Matrica startingPoint, Matrica epsilon, Matrica deltaX, int iterations)
        {
            Matrica x = new Matrica();

            x.Equals(startingPoint);
            int counter = 0;

            while (true)
            {
                Matrica dx = new Matrica();
                dx.Equals(deltaX);
                TransformedFunction transformedFunction = new TransformedFunction(function, implicitRestrictions, t);
                Matrica             xs = new Matrica();
                xs.Equals(x);
                x  = HookeJeevesMethod.FindMinimum(xs, transformedFunction, epsilon, dx, algorithmName);
                t *= 10;
                counter++;

                if (OptimizationUtils.CheckIfPointsAreSimilar(x, xs, e) || counter > iterations)
                {
                    break;
                }
            }

            function.DeleteParameters();
            return(x);
        }
Example #2
0
        /// <summary>
        /// Finds minimum of function using Box optimization method.
        /// </summary>
        /// <param name="function">Function used to optimize.</param>
        /// <param name="implicitRestrictions">List of implicit restrictions used in Box method.</param>
        /// <param name="explicitRestriction">List of explicit restrictions used in Box method.</param>
        /// <param name="startingPoint">Starting point of algorithm.</param>
        /// <param name="alfa">Constant alpha used in algorithm.</param>
        /// <param name="iterations">Number of iterations of algorithm.</param>
        /// <returns></returns>

        public static Matrica FindMinimum(Function function, List <RestrictionExpression> implicitRestrictions, ExplicitRestriction explicitRestriction, Matrica startingPoint, double alfa, int iterations)
        {
            if (OptimizationUtils.CheckIfExplicitConstraintsAreMet(explicitRestriction, startingPoint) == false ||
                OptimizationUtils.CheckIfImplicitConstraintsAreMet(implicitRestrictions, startingPoint) == false)
            {
                throw new ArgumentException("Starting point does not meet explicit and/or implicit conditions!");
            }

            int iter = 0;

            function.SetParametersSize(startingPoint.NoOfRows);
            Matrica centroid = new Matrica();

            centroid.Equals(startingPoint);
            int              n      = startingPoint.NoOfRows;
            Random           random = new Random();
            double           R;
            List <Matrica>   simplex  = new List <Matrica>();
            UnimodalInterval interval = explicitRestriction.GetInterval();

            for (int t = 0; t < 2 * n; t++)
            {
                double[] point = new double[n];
                for (int i = 0; i < n; i++)
                {
                    R        = random.NextDouble() * (maximumForRandom - minimumForRandom) + minimumForRandom;
                    point[i] = interval.Minimum + R * (interval.Maximum - interval.Minimum);
                }

                simplex.Insert(t, Matrica.ArrayToVector(point));

                bool[] simplexPointMeetsImplicitRestrictions = new bool[implicitRestrictions.Count];
                for (int i = 0; i < implicitRestrictions.Count; i++)
                {
                    simplexPointMeetsImplicitRestrictions[i] = false;
                }

                while (true)
                {
                    for (int i = 0; i < implicitRestrictions.Count; i++)
                    {
                        simplexPointMeetsImplicitRestrictions[i] = implicitRestrictions[i].CheckIfMet(simplex[t].VectorToArray());
                        if (simplexPointMeetsImplicitRestrictions[i] == false)
                        {
                            simplex[t].AddValue(centroid);
                            simplex[t].MultiplyByScalar(1.0 / 2);
                            break;
                        }
                    }

                    if (!simplexPointMeetsImplicitRestrictions.Contains(false))
                    {
                        break;
                    }
                }

                centroid = GetCentroidPoint(simplex);
            }

            List <double> functionValues = GetSimplexPointsFunctionValues(simplex, function);
            Matrica       xr             = new Matrica();

            do
            {
                int h  = GetIndexOfWorstPoint(functionValues);
                int h2 = GetIndexOfSecondWorstPoint(functionValues, h);
                centroid = GetCentroidPoint(simplex, h);
                xr       = Reflection(centroid, simplex[h], alfa);

                for (int i = 0; i < xr.NoOfRows; i++)
                {
                    if (xr.LoadedMatrix[i][0] < interval.Minimum)
                    {
                        xr.LoadedMatrix[i][0] = interval.Minimum;
                    }
                    else if (xr.LoadedMatrix[i][0] > interval.Maximum)
                    {
                        xr.LoadedMatrix[i][0] = interval.Maximum;
                    }
                }

                bool[] reflectionMeetsImplicitRestrictions = new bool[implicitRestrictions.Count];
                for (int i = 0; i < implicitRestrictions.Count; i++)
                {
                    reflectionMeetsImplicitRestrictions[i] = false;
                }

                while (true)
                {
                    for (int i = 0; i < implicitRestrictions.Count; i++)
                    {
                        reflectionMeetsImplicitRestrictions[i] = implicitRestrictions[i].CheckIfMet(xr.VectorToArray());
                        if (reflectionMeetsImplicitRestrictions[i] == false)
                        {
                            xr.AddValue(centroid);
                            xr.MultiplyByScalar(1.0 / 2);
                            break;
                        }
                    }

                    if (!reflectionMeetsImplicitRestrictions.Contains(false))
                    {
                        break;
                    }
                }

                double xrFunctionValue = function.CalculateValue(xr.VectorToArray());
                function.IncreaseCounterValue(algorithmName);
                if (xrFunctionValue > functionValues[h2])
                {
                    xr.AddValue(centroid);
                    xr.MultiplyByScalar(1.0 / 2);
                }

                simplex[h]        = xr;
                functionValues[h] = xrFunctionValue;
                iter++;
            } while (iter < iterations);

            function.DeleteParameters();
            return(simplex.ElementAt(functionValues.IndexOf(functionValues.Min())));
        }