/// <summary>
        /// Decrypts Login Key from Client
        /// </summary>
        /// <param name="LoginKey">
        /// Login Key from Client
        /// </param>
        /// <param name="UserName">
        /// Username stored in Login Key
        /// </param>
        /// <param name="ServerSalt">
        /// Server Salt stored in Login Key
        /// </param>
        /// <param name="Password">
        /// Password stored in Login Key
        /// </param>
        public void DecryptLoginKey(string LoginKey, out string UserName, out string ServerSalt, out string Password)
        {
            string[] LoginKeySplit = LoginKey.Split('-');

            BigInteger ClientPublicKey = new BigInteger(LoginKeySplit[0], 16);
            string EncryptedBlock = LoginKeySplit[1];

            // These should really be in a config file, but for now hardcoded
            BigInteger ServerPrivateKey =
                new BigInteger("7ad852c6494f664e8df21446285ecd6f400cf20e1d872ee96136d7744887424b", 16);
            BigInteger Prime =
                new BigInteger(
                    "eca2e8c85d863dcdc26a429a71a9815ad052f6139669dd659f98ae159d313d13c6bf2838e10a69b6478b64a24bd054ba8248e8fa778703b418408249440b2c1edd28853e240d8a7e49540b76d120d3b1ad2878b1b99490eb4a2a5e84caa8a91cecbdb1aa7c816e8be343246f80c637abc653b893fd91686cf8d32d6cfe5f2a6f", 
                    16);

            string TeaKey = ClientPublicKey.modPow(ServerPrivateKey, Prime).ToString(16).ToLower();

            if (TeaKey.Length < 32)
            {
                // If TeaKey is not at least 128bits, pad to the left with 0x00
                TeaKey.PadLeft(32, '0');
            }
            else
            {
                // If TeaKey is more than 128bits, truncate
                TeaKey = TeaKey.Substring(0, 32);
            }

            string DecryptedBlock = this.DecryptTea(EncryptedBlock, TeaKey);

            DecryptedBlock = DecryptedBlock.Substring(8); // Strip first 8 bytes of padding

            int DataLength = this.ConvertStringToIntSwapEndian(DecryptedBlock.Substring(0, 4));

            DecryptedBlock = DecryptedBlock.Substring(4);

            string[] BlockParts = DecryptedBlock.Split(new[] { '|' }, 2);

            UserName = BlockParts[0];

            ServerSalt = string.Empty;

            for (int i = 0; i < 32; i += 4)
            {
                ServerSalt += string.Format("{0:x8}", this.ConvertStringToIntSwapEndian(BlockParts[1].Substring(i, 4)));
            }

            Password = BlockParts[1].Substring(33, DataLength - 34 - UserName.Length);
        }
        /// <summary>
        /// </summary>
        /// <param name="bi1">
        /// </param>
        /// <param name="shiftVal">
        /// </param>
        /// <returns>
        /// </returns>
        public static BigInteger operator >>(BigInteger bi1, int shiftVal)
        {
            BigInteger result = new BigInteger(bi1);
            result.dataLength = shiftRight(result.data, shiftVal);

            if ((bi1.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative
                for (int i = maxLength - 1; i >= result.dataLength; i--)
                {
                    result.data[i] = 0xFFFFFFFF;
                }

                uint mask = 0x80000000;
                for (int i = 0; i < 32; i++)
                {
                    if ((result.data[result.dataLength - 1] & mask) != 0)
                    {
                        break;
                    }

                    result.data[result.dataLength - 1] |= mask;
                    mask >>= 1;
                }

                result.dataLength = maxLength;
            }

            return result;
        }
        /// <summary>
        /// </summary>
        /// <param name="bits">
        /// </param>
        /// <param name="confidence">
        /// </param>
        /// <param name="rand">
        /// </param>
        /// <returns>
        /// </returns>
        public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)
        {
            BigInteger result = new BigInteger();
            bool done = false;

            while (!done)
            {
                result.genRandomBits(bits, rand);
                result.data[0] |= 0x01; // make it odd

                // prime test
                done = result.isProbablePrime(confidence);
            }

            return result;
        }
        // ***********************************************************************
        // Tests the correct implementation of the modulo exponential and
        // inverse modulo functions using RSA encryption and decryption.  The two
        // pseudoprimes p and q are fixed, but the two RSA keys are generated
        // for each round of testing.
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="rounds">
        /// </param>
        public static void RSATest2(int rounds)
        {
            Random rand = new Random();
            byte[] val = new byte[64];

            byte[] pseudoPrime1 =
            {
                0x85, 0x84, 0x64, 0xFD, 0x70, 0x6A, 0x9F, 0xF0, 0x94, 0x0C, 0x3E, 0x2C, 0x74, 0x34, 
                0x05, 0xC9, 0x55, 0xB3, 0x85, 0x32, 0x98, 0x71, 0xF9, 0x41, 0x21, 0x5F, 0x02, 0x9E, 
                0xEA, 0x56, 0x8D, 0x8C, 0x44, 0xCC, 0xEE, 0xEE, 0x3D, 0x2C, 0x9D, 0x2C, 0x12, 0x41, 
                0x1E, 0xF1, 0xC5, 0x32, 0xC3, 0xAA, 0x31, 0x4A, 0x52, 0xD8, 0xE8, 0xAF, 0x42, 0xF4, 
                0x72, 0xA1, 0x2A, 0x0D, 0x97, 0xB1, 0x31, 0xB3, 
            };

            byte[] pseudoPrime2 =
            {
                0x99, 0x98, 0xCA, 0xB8, 0x5E, 0xD7, 0xE5, 0xDC, 0x28, 0x5C, 0x6F, 0x0E, 0x15, 0x09, 
                0x59, 0x6E, 0x84, 0xF3, 0x81, 0xCD, 0xDE, 0x42, 0xDC, 0x93, 0xC2, 0x7A, 0x62, 0xAC, 
                0x6C, 0xAF, 0xDE, 0x74, 0xE3, 0xCB, 0x60, 0x20, 0x38, 0x9C, 0x21, 0xC3, 0xDC, 0xC8, 
                0xA2, 0x4D, 0xC6, 0x2A, 0x35, 0x7F, 0xF3, 0xA9, 0xE8, 0x1D, 0x7B, 0x2C, 0x78, 0xFA, 
                0xB8, 0x02, 0x55, 0x80, 0x9B, 0xC2, 0xA5, 0xCB, 
            };

            BigInteger bi_p = new BigInteger(pseudoPrime1);
            BigInteger bi_q = new BigInteger(pseudoPrime2);
            BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
            BigInteger bi_n = bi_p * bi_q;

            for (int count = 0; count < rounds; count++)
            {
                // generate private and public key
                BigInteger bi_e = bi_pq.genCoPrime(512, rand);
                BigInteger bi_d = bi_e.modInverse(bi_pq);

                Console.WriteLine("\ne =\n" + bi_e.ToString(10));
                Console.WriteLine("\nd =\n" + bi_d.ToString(10));
                Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

                // generate data of random length
                int t1 = 0;
                while (t1 == 0)
                {
                    t1 = (int)(rand.NextDouble() * 65);
                }

                bool done = false;
                while (!done)
                {
                    for (int i = 0; i < 64; i++)
                    {
                        if (i < t1)
                        {
                            val[i] = (byte)(rand.NextDouble() * 256);
                        }
                        else
                        {
                            val[i] = 0;
                        }

                        if (val[i] != 0)
                        {
                            done = true;
                        }
                    }
                }

                while (val[0] == 0)
                {
                    val[0] = (byte)(rand.NextDouble() * 256);
                }

                Console.Write("Round = " + count);

                // encrypt and decrypt data
                BigInteger bi_data = new BigInteger(val, t1);
                BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

                // compare
                if (bi_decrypted != bi_data)
                {
                    Console.WriteLine("\nError at round " + count);
                    Console.WriteLine(bi_data + "\n");
                    return;
                }

                Console.WriteLine(" <PASSED>.");
            }
        }
        /// <summary>
        /// </summary>
        /// <param name="rounds">
        /// </param>
        public static void MulDivTest(int rounds)
        {
            Random rand = new Random();
            byte[] val = new byte[64];
            byte[] val2 = new byte[64];

            for (int count = 0; count < rounds; count++)
            {
                // generate 2 numbers of random length
                int t1 = 0;
                while (t1 == 0)
                {
                    t1 = (int)(rand.NextDouble() * 65);
                }

                int t2 = 0;
                while (t2 == 0)
                {
                    t2 = (int)(rand.NextDouble() * 65);
                }

                bool done = false;
                while (!done)
                {
                    for (int i = 0; i < 64; i++)
                    {
                        if (i < t1)
                        {
                            val[i] = (byte)(rand.NextDouble() * 256);
                        }
                        else
                        {
                            val[i] = 0;
                        }

                        if (val[i] != 0)
                        {
                            done = true;
                        }
                    }
                }

                done = false;
                while (!done)
                {
                    for (int i = 0; i < 64; i++)
                    {
                        if (i < t2)
                        {
                            val2[i] = (byte)(rand.NextDouble() * 256);
                        }
                        else
                        {
                            val2[i] = 0;
                        }

                        if (val2[i] != 0)
                        {
                            done = true;
                        }
                    }
                }

                while (val[0] == 0)
                {
                    val[0] = (byte)(rand.NextDouble() * 256);
                }

                while (val2[0] == 0)
                {
                    val2[0] = (byte)(rand.NextDouble() * 256);
                }

                Console.WriteLine(count);
                BigInteger bn1 = new BigInteger(val, t1);
                BigInteger bn2 = new BigInteger(val2, t2);

                // Determine the quotient and remainder by dividing
                // the first number by the second.
                BigInteger bn3 = bn1 / bn2;
                BigInteger bn4 = bn1 % bn2;

                // Recalculate the number
                BigInteger bn5 = (bn3 * bn2) + bn4;

                // Make sure they're the same
                if (bn5 != bn1)
                {
                    Console.WriteLine("Error at " + count);
                    Console.WriteLine(bn1 + "\n");
                    Console.WriteLine(bn2 + "\n");
                    Console.WriteLine(bn3 + "\n");
                    Console.WriteLine(bn4 + "\n");
                    Console.WriteLine(bn5 + "\n");
                    return;
                }
            }
        }
        /// <summary>
        /// </summary>
        /// <param name="a">
        /// </param>
        /// <param name="b">
        /// </param>
        /// <returns>
        /// </returns>
        /// <exception cref="ArgumentException">
        /// </exception>
        public static int Jacobi(BigInteger a, BigInteger b)
        {
            // Jacobi defined only for odd integers
            if ((b.data[0] & 0x1) == 0)
            {
                throw new ArgumentException("Jacobi defined only for odd integers.");
            }

            if (a >= b)
            {
                a %= b;
            }

            if (a.dataLength == 1 && a.data[0] == 0)
            {
                return 0; // a == 0
            }

            if (a.dataLength == 1 && a.data[0] == 1)
            {
                return 1; // a == 1
            }

            if (a < 0)
            {
                if (((b - 1).data[0] & 0x2) == 0)
                {
                    // if( (((b-1) >> 1).data[0] & 0x1) == 0)
                    return Jacobi(-a, b);
                }
                else
                {
                    return -Jacobi(-a, b);
                }
            }

            int e = 0;
            for (int index = 0; index < a.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((a.data[index] & mask) != 0)
                    {
                        index = a.dataLength; // to break the outer loop
                        break;
                    }

                    mask <<= 1;
                    e++;
                }
            }

            BigInteger a1 = a >> e;

            int s = 1;
            if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
            {
                s = -1;
            }

            if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
            {
                s = -s;
            }

            if (a1.dataLength == 1 && a1.data[0] == 1)
            {
                return s;
            }
            else
            {
                return s * Jacobi(b % a1, a1);
            }
        }
        /// <summary>
        /// </summary>
        /// <param name="x">
        /// </param>
        /// <param name="n">
        /// </param>
        /// <param name="constant">
        /// </param>
        /// <returns>
        /// </returns>
        private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant)
        {
            int k = n.dataLength, kPlusOne = k + 1, kMinusOne = k - 1;

            BigInteger q1 = new BigInteger();

            // q1 = x / b^(k-1)
            for (int i = kMinusOne, j = 0; i < x.dataLength; i++, j++)
            {
                q1.data[j] = x.data[i];
            }

            q1.dataLength = x.dataLength - kMinusOne;
            if (q1.dataLength <= 0)
            {
                q1.dataLength = 1;
            }

            BigInteger q2 = q1 * constant;
            BigInteger q3 = new BigInteger();

            // q3 = q2 / b^(k+1)
            for (int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++)
            {
                q3.data[j] = q2.data[i];
            }

            q3.dataLength = q2.dataLength - kPlusOne;
            if (q3.dataLength <= 0)
            {
                q3.dataLength = 1;
            }

            // r1 = x mod b^(k+1)
            // i.e. keep the lowest (k+1) words
            BigInteger r1 = new BigInteger();
            int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength;
            for (int i = 0; i < lengthToCopy; i++)
            {
                r1.data[i] = x.data[i];
            }

            r1.dataLength = lengthToCopy;

            // r2 = (q3 * n) mod b^(k+1)
            // partial multiplication of q3 and n
            BigInteger r2 = new BigInteger();
            for (int i = 0; i < q3.dataLength; i++)
            {
                if (q3.data[i] == 0)
                {
                    continue;
                }

                ulong mcarry = 0;
                int t = i;
                for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++)
                {
                    // t = i + j
                    ulong val = (q3.data[i] * (ulong)n.data[j]) + r2.data[t] + mcarry;

                    r2.data[t] = (uint)(val & 0xFFFFFFFF);
                    mcarry = val >> 32;
                }

                if (t < kPlusOne)
                {
                    r2.data[t] = (uint)mcarry;
                }
            }

            r2.dataLength = kPlusOne;
            while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0)
            {
                r2.dataLength--;
            }

            r1 -= r2;
            if ((r1.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative
                BigInteger val = new BigInteger();
                val.data[kPlusOne] = 0x00000001;
                val.dataLength = kPlusOne + 1;
                r1 += val;
            }

            while (r1 >= n)
            {
                r1 -= n;
            }

            return r1;
        }
        /// <summary>
        /// </summary>
        /// <param name="bi1">
        /// </param>
        /// <param name="bi2">
        /// </param>
        /// <param name="outQuotient">
        /// </param>
        /// <param name="outRemainder">
        /// </param>
        private static void multiByteDivide(
            BigInteger bi1, 
            BigInteger bi2, 
            BigInteger outQuotient, 
            BigInteger outRemainder)
        {
            uint[] result = new uint[maxLength];

            int remainderLen = bi1.dataLength + 1;
            uint[] remainder = new uint[remainderLen];

            uint mask = 0x80000000;
            uint val = bi2.data[bi2.dataLength - 1];
            int shift = 0, resultPos = 0;

            while (mask != 0 && (val & mask) == 0)
            {
                shift++;
                mask >>= 1;
            }

            // Console.WriteLine("shift = {0}", shift);
            // Console.WriteLine("Before bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
            for (int i = 0; i < bi1.dataLength; i++)
            {
                remainder[i] = bi1.data[i];
            }

            shiftLeft(remainder, shift);
            bi2 = bi2 << shift;

            /*
                Console.WriteLine("bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
                Console.WriteLine("dividend = " + bi1 + "\ndivisor = " + bi2);
                for(int q = remainderLen - 1; q >= 0; q--)
                        Console.Write("{0:x2}", remainder[q]);
                Console.WriteLine();
                */
            int j = remainderLen - bi2.dataLength;
            int pos = remainderLen - 1;

            ulong firstDivisorByte = bi2.data[bi2.dataLength - 1];
            ulong secondDivisorByte = bi2.data[bi2.dataLength - 2];

            int divisorLen = bi2.dataLength + 1;
            uint[] dividendPart = new uint[divisorLen];

            while (j > 0)
            {
                ulong dividend = ((ulong)remainder[pos] << 32) + remainder[pos - 1];

                // Console.WriteLine("dividend = {0}", dividend);
                ulong q_hat = dividend / firstDivisorByte;
                ulong r_hat = dividend % firstDivisorByte;

                // Console.WriteLine("q_hat = {0:X}, r_hat = {1:X}", q_hat, r_hat);
                bool done = false;
                while (!done)
                {
                    done = true;

                    if (q_hat == 0x100000000 || (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2]))
                    {
                        q_hat--;
                        r_hat += firstDivisorByte;

                        if (r_hat < 0x100000000)
                        {
                            done = false;
                        }
                    }
                }

                for (int h = 0; h < divisorLen; h++)
                {
                    dividendPart[h] = remainder[pos - h];
                }

                BigInteger kk = new BigInteger(dividendPart);
                BigInteger ss = bi2 * (long)q_hat;

                // Console.WriteLine("ss before = " + ss);
                while (ss > kk)
                {
                    q_hat--;
                    ss -= bi2;

                    // Console.WriteLine(ss);
                }

                BigInteger yy = kk - ss;

                // Console.WriteLine("ss = " + ss);
                // Console.WriteLine("kk = " + kk);
                // Console.WriteLine("yy = " + yy);
                for (int h = 0; h < divisorLen; h++)
                {
                    remainder[pos - h] = yy.data[bi2.dataLength - h];
                }

                /*
                        Console.WriteLine("dividend = ");
                        for(int q = remainderLen - 1; q >= 0; q--)
                                Console.Write("{0:x2}", remainder[q]);
                        Console.WriteLine("\n************ q_hat = {0:X}\n", q_hat);
                        */
                result[resultPos++] = (uint)q_hat;

                pos--;
                j--;
            }

            outQuotient.dataLength = resultPos;
            int y = 0;
            for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++)
            {
                outQuotient.data[y] = result[x];
            }

            for (; y < maxLength; y++)
            {
                outQuotient.data[y] = 0;
            }

            while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)
            {
                outQuotient.dataLength--;
            }

            if (outQuotient.dataLength == 0)
            {
                outQuotient.dataLength = 1;
            }

            outRemainder.dataLength = shiftRight(remainder, shift);

            for (y = 0; y < outRemainder.dataLength; y++)
            {
                outRemainder.data[y] = remainder[y];
            }

            for (; y < maxLength; y++)
            {
                outRemainder.data[y] = 0;
            }
        }
        // ***********************************************************************
        // Returns a string representing the BigInteger in sign-and-magnitude
        // format in the specified radix.
        // Example
        // -------
        // If the value of BigInteger is -255 in base 10, then
        // ToString(16) returns "-FF"
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="radix">
        /// </param>
        /// <returns>
        /// </returns>
        /// <exception cref="ArgumentException">
        /// </exception>
        public string ToString(int radix)
        {
            if (radix < 2 || radix > 36)
            {
                throw new ArgumentException("Radix must be >= 2 and <= 36");
            }

            string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
            string result = string.Empty;

            BigInteger a = this;

            bool negative = false;
            if ((a.data[maxLength - 1] & 0x80000000) != 0)
            {
                negative = true;
                try
                {
                    a = -a;
                }
                catch (Exception)
                {
                }
            }

            BigInteger quotient = new BigInteger();
            BigInteger remainder = new BigInteger();
            BigInteger biRadix = new BigInteger(radix);

            if (a.dataLength == 1 && a.data[0] == 0)
            {
                result = "0";
            }
            else
            {
                while (a.dataLength > 1 || (a.dataLength == 1 && a.data[0] != 0))
                {
                    singleByteDivide(a, biRadix, quotient, remainder);

                    if (remainder.data[0] < 10)
                    {
                        result = remainder.data[0] + result;
                    }
                    else
                    {
                        result = charSet[(int)remainder.data[0] - 10] + result;
                    }

                    a = quotient;
                }

                if (negative)
                {
                    result = "-" + result;
                }
            }

            return result;
        }
Example #10
0
        // ***********************************************************************
        // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
        // p is probably prime if for any a < p (a is not multiple of p),
        // a^((p-1)/2) mod p = J(a, p)
        // where J is the Jacobi symbol.
        // Otherwise, p is composite.
        // Returns
        // -------
        // True if "this" is a Euler pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        // False if "this" is definitely NOT prime.
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="confidence">
        /// </param>
        /// <returns>
        /// </returns>
        public bool SolovayStrassenTest(int confidence)
        {
            BigInteger thisVal;
            if ((this.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative
                thisVal = -this;
            }
            else
            {
                thisVal = this;
            }

            if (thisVal.dataLength == 1)
            {
                // test small numbers
                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                {
                    return false;
                }
                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                {
                    return true;
                }
            }

            if ((thisVal.data[0] & 0x1) == 0)
            {
                // even numbers
                return false;
            }

            int bits = thisVal.bitCount();
            BigInteger a = new BigInteger();
            BigInteger p_sub1 = thisVal - 1;
            BigInteger p_sub1_shift = p_sub1 >> 1;

            Random rand = new Random();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done)
                {
                    // generate a < n
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                    {
                        testBits = (int)(rand.NextDouble() * bits);
                    }

                    a.genRandomBits(testBits, rand);

                    int byteLen = a.dataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                    {
                        done = true;
                    }
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.gcd(thisVal);
                if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                {
                    return false;
                }

                // calculate a^((p-1)/2) mod p
                BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
                if (expResult == p_sub1)
                {
                    expResult = -1;
                }

                // calculate Jacobi symbol
                BigInteger jacob = Jacobi(a, thisVal);

                // Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                // Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

                // if they are different then it is not prime
                if (expResult != jacob)
                {
                    return false;
                }
            }

            return true;
        }
Example #11
0
        // ***********************************************************************
        // Constructor (Default value provided by BigInteger)
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="bi">
        /// </param>
        public BigInteger(BigInteger bi)
        {
            this.data = new uint[maxLength];

            this.dataLength = bi.dataLength;

            for (int i = 0; i < this.dataLength; i++)
            {
                this.data[i] = bi.data[i];
            }
        }
Example #12
0
        /// <summary>
        /// </summary>
        /// <param name="confidence">
        /// </param>
        /// <returns>
        /// </returns>
        public bool RabinMillerTest(int confidence)
        {
            BigInteger thisVal;
            if ((this.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative
                thisVal = -this;
            }
            else
            {
                thisVal = this;
            }

            if (thisVal.dataLength == 1)
            {
                // test small numbers
                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                {
                    return false;
                }
                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                {
                    return true;
                }
            }

            if ((thisVal.data[0] & 0x1) == 0)
            {
                // even numbers
                return false;
            }

            // calculate values of s and t
            BigInteger p_sub1 = thisVal - (new BigInteger(1));
            int s = 0;

            for (int index = 0; index < p_sub1.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((p_sub1.data[index] & mask) != 0)
                    {
                        index = p_sub1.dataLength; // to break the outer loop
                        break;
                    }

                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = p_sub1 >> s;

            int bits = thisVal.bitCount();
            BigInteger a = new BigInteger();
            Random rand = new Random();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done)
                {
                    // generate a < n
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                    {
                        testBits = (int)(rand.NextDouble() * bits);
                    }

                    a.genRandomBits(testBits, rand);

                    int byteLen = a.dataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                    {
                        done = true;
                    }
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.gcd(thisVal);
                if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                {
                    return false;
                }

                BigInteger b = a.modPow(t, thisVal);

                /*
                        Console.WriteLine("a = " + a.ToString(10));
                        Console.WriteLine("b = " + b.ToString(10));
                        Console.WriteLine("t = " + t.ToString(10));
                        Console.WriteLine("s = " + s);
                        */
                bool result = false;

                if (b.dataLength == 1 && b.data[0] == 1)
                {
                    // a^t mod p = 1
                    result = true;
                }

                for (int j = 0; result == false && j < s; j++)
                {
                    if (b == p_sub1)
                    {
                        // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                        result = true;
                        break;
                    }

                    b = (b * b) % thisVal;
                }

                if (result == false)
                {
                    return false;
                }
            }

            return true;
        }
Example #13
0
        /// <summary>
        /// </summary>
        /// <param name="confidence">
        /// </param>
        /// <returns>
        /// </returns>
        public bool FermatLittleTest(int confidence)
        {
            BigInteger thisVal;
            if ((this.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative
                thisVal = -this;
            }
            else
            {
                thisVal = this;
            }

            if (thisVal.dataLength == 1)
            {
                // test small numbers
                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                {
                    return false;
                }
                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                {
                    return true;
                }
            }

            if ((thisVal.data[0] & 0x1) == 0)
            {
                // even numbers
                return false;
            }

            int bits = thisVal.bitCount();
            BigInteger a = new BigInteger();
            BigInteger p_sub1 = thisVal - (new BigInteger(1));
            Random rand = new Random();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done)
                {
                    // generate a < n
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                    {
                        testBits = (int)(rand.NextDouble() * bits);
                    }

                    a.genRandomBits(testBits, rand);

                    int byteLen = a.dataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                    {
                        done = true;
                    }
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.gcd(thisVal);
                if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                {
                    return false;
                }

                // calculate a^(p-1) mod p
                BigInteger expResult = a.modPow(p_sub1, thisVal);

                int resultLen = expResult.dataLength;

                // is NOT prime is a^(p-1) mod p != 1
                if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
                {
                    // Console.WriteLine("a = " + a.ToString());
                    return false;
                }
            }

            return true;
        }
Example #14
0
        // ***********************************************************************
        // Overloading of the NEGATE operator (2's complement)
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="bi1">
        /// </param>
        /// <returns>
        /// </returns>
        /// <exception cref="ArithmeticException">
        /// </exception>
        public static BigInteger operator -(BigInteger bi1)
        {
            // handle neg of zero separately since it'll cause an overflow
            // if we proceed.
            if (bi1.dataLength == 1 && bi1.data[0] == 0)
            {
                return new BigInteger();
            }

            BigInteger result = new BigInteger(bi1);

            // 1's complement
            for (int i = 0; i < maxLength; i++)
            {
                result.data[i] = ~bi1.data[i];
            }

            // add one to result of 1's complement
            long val, carry = 1;
            int index = 0;

            while (carry != 0 && index < maxLength)
            {
                val = result.data[index];
                val++;

                result.data[index] = (uint)(val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000))
            {
                throw new ArithmeticException("Overflow in negation.\n");
            }

            result.dataLength = maxLength;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
            {
                result.dataLength--;
            }

            return result;
        }
Example #15
0
        /// <summary>
        /// </summary>
        /// <param name="bi1">
        /// </param>
        /// <param name="bi2">
        /// </param>
        /// <returns>
        /// </returns>
        /// <exception cref="ArithmeticException">
        /// </exception>
        public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
        {
            BigInteger result = new BigInteger();

            result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

            long carryIn = 0;
            for (int i = 0; i < result.dataLength; i++)
            {
                long diff;

                diff = bi1.data[i] - (long)bi2.data[i] - carryIn;
                result.data[i] = (uint)(diff & 0xFFFFFFFF);

                if (diff < 0)
                {
                    carryIn = 1;
                }
                else
                {
                    carryIn = 0;
                }
            }

            // roll over to negative
            if (carryIn != 0)
            {
                for (int i = result.dataLength; i < maxLength; i++)
                {
                    result.data[i] = 0xFFFFFFFF;
                }

                result.dataLength = maxLength;
            }

            // fixed in v1.03 to give correct datalength for a - (-b)
            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
            {
                result.dataLength--;
            }

            // overflow check
            int lastPos = maxLength - 1;
            if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000)
                && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw new ArithmeticException();
            }

            return result;
        }
Example #16
0
        // ***********************************************************************
        // Sets the value of the specified bit to 0
        // The Least Significant Bit position is 0.
        // ***********************************************************************

        // ***********************************************************************
        // Returns a value that is equivalent to the integer square root
        // of the BigInteger.
        // The integer square root of "this" is defined as the largest integer n
        // such that (n * n) <= this
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <returns>
        /// </returns>
        public BigInteger sqrt()
        {
            uint numBits = (uint)this.bitCount();

            if ((numBits & 0x1) != 0)
            {
                // odd number of bits
                numBits = (numBits >> 1) + 1;
            }
            else
            {
                numBits = numBits >> 1;
            }

            uint bytePos = numBits >> 5;
            byte bitPos = (byte)(numBits & 0x1F);

            uint mask;

            BigInteger result = new BigInteger();
            if (bitPos == 0)
            {
                mask = 0x80000000;
            }
            else
            {
                mask = (uint)1 << bitPos;
                bytePos++;
            }

            result.dataLength = (int)bytePos;

            for (int i = (int)bytePos - 1; i >= 0; i--)
            {
                while (mask != 0)
                {
                    // guess
                    result.data[i] ^= mask;

                    // undo the guess if its square is larger than this
                    if ((result * result) > this)
                    {
                        result.data[i] ^= mask;
                    }

                    mask >>= 1;
                }

                mask = 0x80000000;
            }

            return result;
        }
Example #17
0
        // ***********************************************************************
        // Returns the k_th number in the Lucas Sequence reduced modulo n.
        // Uses index doubling to speed up the process.  For example, to calculate V(k),
        // we maintain two numbers in the sequence V(n) and V(n+1).
        // To obtain V(2n), we use the identity
        // V(2n) = (V(n) * V(n)) - (2 * Q^n)
        // To obtain V(2n+1), we first write it as
        // V(2n+1) = V((n+1) + n)
        // and use the identity
        // V(m+n) = V(m) * V(n) - Q * V(m-n)
        // Hence,
        // V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
        // = V(n+1) * V(n) - Q^n * V(1)
        // = V(n+1) * V(n) - Q^n * P
        // We use k in its binary expansion and perform index doubling for each
        // bit position.  For each bit position that is set, we perform an
        // index doubling followed by an index addition.  This means that for V(n),
        // we need to update it to V(2n+1).  For V(n+1), we need to update it to
        // V((2n+1)+1) = V(2*(n+1))
        // This function returns
        // [0] = U(k)
        // [1] = V(k)
        // [2] = Q^n
        // Where U(0) = 0 % n, U(1) = 1 % n
        // V(0) = 2 % n, V(1) = P % n
        // ***********************************************************************

        // ***********************************************************************
        // Performs the calculation of the kth term in the Lucas Sequence.
        // For details of the algorithm, see reference [9].
        // k must be odd.  i.e LSB == 1
        // ***********************************************************************

        #region Methods

        /// <summary>
        /// </summary>
        /// <param name="P">
        /// </param>
        /// <param name="Q">
        /// </param>
        /// <param name="k">
        /// </param>
        /// <param name="n">
        /// </param>
        /// <param name="constant">
        /// </param>
        /// <param name="s">
        /// </param>
        /// <returns>
        /// </returns>
        /// <exception cref="ArgumentException">
        /// </exception>
        private static BigInteger[] LucasSequenceHelper(
            BigInteger P, 
            BigInteger Q, 
            BigInteger k, 
            BigInteger n, 
            BigInteger constant, 
            int s)
        {
            BigInteger[] result = new BigInteger[3];

            if ((k.data[0] & 0x00000001) == 0)
            {
                throw new ArgumentException("Argument k must be odd.");
            }

            int numbits = k.bitCount();
            uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

            // v = v0, v1 = v1, u1 = u1, Q_k = Q^0
            BigInteger v = 2 % n, Q_k = 1 % n, v1 = P % n, u1 = Q_k;
            bool flag = true;

            for (int i = k.dataLength - 1; i >= 0; i--)
            {
                // iterate on the binary expansion of k
                // Console.WriteLine("round");
                while (mask != 0)
                {
                    if (i == 0 && mask == 0x00000001)
                    {
                        // last bit
                        break;
                    }

                    if ((k.data[i] & mask) != 0)
                    {
                        // bit is set
                        // index doubling with addition
                        u1 = (u1 * v1) % n;

                        v = ((v * v1) - (P * Q_k)) % n;
                        v1 = n.BarrettReduction(v1 * v1, n, constant);
                        v1 = (v1 - ((Q_k * Q) << 1)) % n;

                        if (flag)
                        {
                            flag = false;
                        }
                        else
                        {
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                        }

                        Q_k = (Q_k * Q) % n;
                    }
                    else
                    {
                        // index doubling
                        u1 = ((u1 * v) - Q_k) % n;

                        v1 = ((v * v1) - (P * Q_k)) % n;
                        v = n.BarrettReduction(v * v, n, constant);
                        v = (v - (Q_k << 1)) % n;

                        if (flag)
                        {
                            Q_k = Q % n;
                            flag = false;
                        }
                        else
                        {
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                        }
                    }

                    mask >>= 1;
                }

                mask = 0x80000000;
            }

            // at this point u1 = u(n+1) and v = v(n)
            // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)
            u1 = ((u1 * v) - Q_k) % n;
            v = ((v * v1) - (P * Q_k)) % n;
            if (flag)
            {
                flag = false;
            }
            else
            {
                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
            }

            Q_k = (Q_k * Q) % n;

            for (int i = 0; i < s; i++)
            {
                // index doubling
                u1 = (u1 * v) % n;
                v = ((v * v) - (Q_k << 1)) % n;

                if (flag)
                {
                    Q_k = Q % n;
                    flag = false;
                }
                else
                {
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                }
            }

            result[0] = u1;
            result[1] = v;
            result[2] = Q_k;

            return result;
        }
Example #18
0
        // ***********************************************************************
        // Constructor (Default value provided by a string of digits of the
        // specified base)
        // Example (base 10)
        // -----------------
        // To initialize "a" with the default value of 1234 in base 10
        // BigInteger a = new BigInteger("1234", 10)
        // To initialize "a" with the default value of -1234
        // BigInteger a = new BigInteger("-1234", 10)
        // Example (base 16)
        // -----------------
        // To initialize "a" with the default value of 0x1D4F in base 16
        // BigInteger a = new BigInteger("1D4F", 16)
        // To initialize "a" with the default value of -0x1D4F
        // BigInteger a = new BigInteger("-1D4F", 16)
        // Note that string values are specified in the <sign><magnitude>
        // format.
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="value">
        /// </param>
        /// <param name="radix">
        /// </param>
        /// <exception cref="ArithmeticException">
        /// </exception>
        public BigInteger(string value, int radix)
        {
            BigInteger multiplier = new BigInteger(1);
            BigInteger result = new BigInteger();
            value = value.ToUpper().Trim();
            int limit = 0;

            if (value[0] == '-')
            {
                limit = 1;
            }

            for (int i = value.Length - 1; i >= limit; i--)
            {
                int posVal = value[i];

                if (posVal >= '0' && posVal <= '9')
                {
                    posVal -= '0';
                }
                else if (posVal >= 'A' && posVal <= 'Z')
                {
                    posVal = (posVal - 'A') + 10;
                }
                else
                {
                    posVal = 9999999; // arbitrary large
                }

                if (posVal >= radix)
                {
                    throw new ArithmeticException("Invalid string in constructor.");
                }
                else
                {
                    if (value[0] == '-')
                    {
                        posVal = -posVal;
                    }

                    result = result + (multiplier * posVal);

                    if ((i - 1) >= limit)
                    {
                        multiplier = multiplier * radix;
                    }
                }
            }

            if (value[0] == '-')
            {
                // negative values
                if ((result.data[maxLength - 1] & 0x80000000) == 0)
                {
                    throw new ArithmeticException("Negative underflow in constructor.");
                }
            }
            else
            {
                // positive values
                if ((result.data[maxLength - 1] & 0x80000000) != 0)
                {
                    throw new ArithmeticException("Positive overflow in constructor.");
                }
            }

            this.data = new uint[maxLength];
            for (int i = 0; i < result.dataLength; i++)
            {
                this.data[i] = result.data[i];
            }

            this.dataLength = result.dataLength;
        }
Example #19
0
        /// <summary>
        /// </summary>
        /// <param name="bi1">
        /// </param>
        /// <param name="bi2">
        /// </param>
        /// <param name="outQuotient">
        /// </param>
        /// <param name="outRemainder">
        /// </param>
        private static void singleByteDivide(
            BigInteger bi1, 
            BigInteger bi2, 
            BigInteger outQuotient, 
            BigInteger outRemainder)
        {
            uint[] result = new uint[maxLength];
            int resultPos = 0;

            // copy dividend to reminder
            for (int i = 0; i < maxLength; i++)
            {
                outRemainder.data[i] = bi1.data[i];
            }

            outRemainder.dataLength = bi1.dataLength;

            while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0)
            {
                outRemainder.dataLength--;
            }

            ulong divisor = bi2.data[0];
            int pos = outRemainder.dataLength - 1;
            ulong dividend = outRemainder.data[pos];

            // Console.WriteLine("divisor = " + divisor + " dividend = " + dividend);
            // Console.WriteLine("divisor = " + bi2 + "\ndividend = " + bi1);
            if (dividend >= divisor)
            {
                ulong quotient = dividend / divisor;
                result[resultPos++] = (uint)quotient;

                outRemainder.data[pos] = (uint)(dividend % divisor);
            }

            pos--;

            while (pos >= 0)
            {
                // Console.WriteLine(pos);
                dividend = ((ulong)outRemainder.data[pos + 1] << 32) + outRemainder.data[pos];
                ulong quotient = dividend / divisor;
                result[resultPos++] = (uint)quotient;

                outRemainder.data[pos + 1] = 0;
                outRemainder.data[pos--] = (uint)(dividend % divisor);

                // Console.WriteLine(">>>> " + bi1);
            }

            outQuotient.dataLength = resultPos;
            int j = 0;
            for (int i = outQuotient.dataLength - 1; i >= 0; i--, j++)
            {
                outQuotient.data[j] = result[i];
            }

            for (; j < maxLength; j++)
            {
                outQuotient.data[j] = 0;
            }

            while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)
            {
                outQuotient.dataLength--;
            }

            if (outQuotient.dataLength == 0)
            {
                outQuotient.dataLength = 1;
            }

            while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0)
            {
                outRemainder.dataLength--;
            }
        }
Example #20
0
        // ***********************************************************************
        // Returns a hex string showing the contains of the BigInteger
        // Examples
        // -------
        // 1) If the value of BigInteger is 255 in base 10, then
        // ToHexString() returns "FF"
        // 2) If the value of BigInteger is -255 in base 10, then
        // ToHexString() returns ".....FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF01",
        // which is the 2's complement representation of -255.
        // ***********************************************************************

        // ***********************************************************************
        // Returns gcd(this, bi)
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="bi">
        /// </param>
        /// <returns>
        /// </returns>
        public BigInteger gcd(BigInteger bi)
        {
            BigInteger x;
            BigInteger y;

            if ((this.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative
                x = -this;
            }
            else
            {
                x = this;
            }

            if ((bi.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative
                y = -bi;
            }
            else
            {
                y = bi;
            }

            BigInteger g = y;

            while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0))
            {
                g = x;
                x = y % x;
                y = g;
            }

            return g;
        }
Example #21
0
        /// <summary>
        /// </summary>
        /// <param name="thisVal">
        /// </param>
        /// <returns>
        /// </returns>
        private bool LucasStrongTestHelper(BigInteger thisVal)
        {
            // Do the test (selects D based on Selfridge)
            // Let D be the first element of the sequence
            // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
            // Let P = 1, Q = (1-D) / 4
            long D = 5, sign = -1, dCount = 0;
            bool done = false;

            while (!done)
            {
                int Jresult = Jacobi(D, thisVal);

                if (Jresult == -1)
                {
                    done = true; // J(D, this) = 1
                }
                else
                {
                    if (Jresult == 0 && Math.Abs(D) < thisVal)
                    {
                        // divisor found
                        return false;
                    }

                    if (dCount == 20)
                    {
                        // check for square
                        BigInteger root = thisVal.sqrt();
                        if (root * root == thisVal)
                        {
                            return false;
                        }
                    }

                    // Console.WriteLine(D);
                    D = (Math.Abs(D) + 2) * sign;
                    sign = -sign;
                }

                dCount++;
            }

            long Q = (1 - D) >> 2;

            /*
                Console.WriteLine("D = " + D);
                Console.WriteLine("Q = " + Q);
                Console.WriteLine("(n,D) = " + thisVal.gcd(D));
                Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
                Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
                */
            BigInteger p_add1 = thisVal + 1;
            int s = 0;

            for (int index = 0; index < p_add1.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((p_add1.data[index] & mask) != 0)
                    {
                        index = p_add1.dataLength; // to break the outer loop
                        break;
                    }

                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = p_add1 >> s;

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            BigInteger constant = new BigInteger();

            int nLen = thisVal.dataLength << 1;
            constant.data[nLen] = 0x00000001;
            constant.dataLength = nLen + 1;

            constant = constant / thisVal;

            BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
            bool isPrime = false;

            if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0)
                || (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
            {
                // u(t) = 0 or V(t) = 0
                isPrime = true;
            }

            for (int i = 1; i < s; i++)
            {
                if (!isPrime)
                {
                    // doubling of index
                    lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                    lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                    // lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;
                    if (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)
                    {
                        isPrime = true;
                    }
                }

                lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); // Q^k
            }

            if (isPrime)
            {
                // additional checks for composite numbers
                // If n is prime and gcd(n, Q) == 1, then
                // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n
                BigInteger g = thisVal.gcd(Q);
                if (g.dataLength == 1 && g.data[0] == 1)
                {
                    // gcd(this, Q) == 1
                    if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
                    {
                        lucas[2] += thisVal;
                    }

                    BigInteger temp = (Q * Jacobi(Q, thisVal)) % thisVal;
                    if ((temp.data[maxLength - 1] & 0x80000000) != 0)
                    {
                        temp += thisVal;
                    }

                    if (lucas[2] != temp)
                    {
                        isPrime = false;
                    }
                }
            }

            return isPrime;
        }
Example #22
0
        /// <summary>
        /// </summary>
        /// <param name="bits">
        /// </param>
        /// <param name="rand">
        /// </param>
        /// <returns>
        /// </returns>
        public BigInteger genCoPrime(int bits, Random rand)
        {
            bool done = false;
            BigInteger result = new BigInteger();

            while (!done)
            {
                result.genRandomBits(bits, rand);

                // Console.WriteLine(result.ToString(16));

                // gcd test
                BigInteger g = result.gcd(this);
                if (g.dataLength == 1 && g.data[0] == 1)
                {
                    done = true;
                }
            }

            return result;
        }
Example #23
0
        /// <summary>
        /// </summary>
        /// <param name="P">
        /// </param>
        /// <param name="Q">
        /// </param>
        /// <param name="k">
        /// </param>
        /// <param name="n">
        /// </param>
        /// <returns>
        /// </returns>
        public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q, BigInteger k, BigInteger n)
        {
            if (k.dataLength == 1 && k.data[0] == 0)
            {
                BigInteger[] result = new BigInteger[3];

                result[0] = 0;
                result[1] = 2 % n;
                result[2] = 1 % n;
                return result;
            }

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            BigInteger constant = new BigInteger();

            int nLen = n.dataLength << 1;
            constant.data[nLen] = 0x00000001;
            constant.dataLength = nLen + 1;

            constant = constant / n;

            // calculate values of s and t
            int s = 0;

            for (int index = 0; index < k.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((k.data[index] & mask) != 0)
                    {
                        index = k.dataLength; // to break the outer loop
                        break;
                    }

                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = k >> s;

            // Console.WriteLine("s = " + s + " t = " + t);
            return LucasSequenceHelper(P, Q, t, n, constant, s);
        }
Example #24
0
 /// <summary>
 /// </summary>
 /// <param name="bi">
 /// </param>
 /// <returns>
 /// </returns>
 public BigInteger max(BigInteger bi)
 {
     if (this > bi)
     {
         return new BigInteger(this);
     }
     else
     {
         return new BigInteger(bi);
     }
 }
Example #25
0
        // ***********************************************************************
        // Tests the correct implementation of the modulo exponential function
        // using RSA encryption and decryption (using pre-computed encryption and
        // decryption keys).
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="rounds">
        /// </param>
        public static void RSATest(int rounds)
        {
            Random rand = new Random(1);
            byte[] val = new byte[64];

            // private and public key
            BigInteger bi_e =
                new BigInteger(
                    "a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 
                    16);
            BigInteger bi_d =
                new BigInteger(
                    "4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 
                    16);
            BigInteger bi_n =
                new BigInteger(
                    "e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 
                    16);

            Console.WriteLine("e =\n" + bi_e.ToString(10));
            Console.WriteLine("\nd =\n" + bi_d.ToString(10));
            Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

            for (int count = 0; count < rounds; count++)
            {
                // generate data of random length
                int t1 = 0;
                while (t1 == 0)
                {
                    t1 = (int)(rand.NextDouble() * 65);
                }

                bool done = false;
                while (!done)
                {
                    for (int i = 0; i < 64; i++)
                    {
                        if (i < t1)
                        {
                            val[i] = (byte)(rand.NextDouble() * 256);
                        }
                        else
                        {
                            val[i] = 0;
                        }

                        if (val[i] != 0)
                        {
                            done = true;
                        }
                    }
                }

                while (val[0] == 0)
                {
                    val[0] = (byte)(rand.NextDouble() * 256);
                }

                Console.Write("Round = " + count);

                // encrypt and decrypt data
                BigInteger bi_data = new BigInteger(val, t1);
                BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

                // compare
                if (bi_decrypted != bi_data)
                {
                    Console.WriteLine("\nError at round " + count);
                    Console.WriteLine(bi_data + "\n");
                    return;
                }

                Console.WriteLine(" <PASSED>.");
            }
        }
Example #26
0
        // ***********************************************************************
        // Returns min(this, bi)
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="bi">
        /// </param>
        /// <returns>
        /// </returns>
        public BigInteger min(BigInteger bi)
        {
            if (this < bi)
            {
                return new BigInteger(this);
            }
            else
            {
                return new BigInteger(bi);
            }
        }
Example #27
0
        // ***********************************************************************
        // Tests the correct implementation of sqrt() method.
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="rounds">
        /// </param>
        public static void SqrtTest(int rounds)
        {
            Random rand = new Random();
            for (int count = 0; count < rounds; count++)
            {
                // generate data of random length
                int t1 = 0;
                while (t1 == 0)
                {
                    t1 = (int)(rand.NextDouble() * 1024);
                }

                Console.Write("Round = " + count);

                BigInteger a = new BigInteger();
                a.genRandomBits(t1, rand);

                BigInteger b = a.sqrt();
                BigInteger c = (b + 1) * (b + 1);

                // check that b is the largest integer such that b*b <= a
                if (c <= a)
                {
                    Console.WriteLine("\nError at round " + count);
                    Console.WriteLine(a + "\n");
                    return;
                }

                Console.WriteLine(" <PASSED>.");
            }
        }
Example #28
0
        // ***********************************************************************
        // Returns the lowest 4 bytes of the BigInteger as an int.
        // ***********************************************************************

        // ***********************************************************************
        // Returns the modulo inverse of this.  Throws ArithmeticException if
        // the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="modulus">
        /// </param>
        /// <returns>
        /// </returns>
        /// <exception cref="ArithmeticException">
        /// </exception>
        public BigInteger modInverse(BigInteger modulus)
        {
            BigInteger[] p = { 0, 1 };
            BigInteger[] q = new BigInteger[2]; // quotients
            BigInteger[] r = { 0, 0 }; // remainders

            int step = 0;

            BigInteger a = modulus;
            BigInteger b = this;

            while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))
            {
                BigInteger quotient = new BigInteger();
                BigInteger remainder = new BigInteger();

                if (step > 1)
                {
                    BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
                    p[0] = p[1];
                    p[1] = pval;
                }

                if (b.dataLength == 1)
                {
                    singleByteDivide(a, b, quotient, remainder);
                }
                else
                {
                    multiByteDivide(a, b, quotient, remainder);
                }

                /*
                        Console.WriteLine(quotient.dataLength);
                        Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),
                                          b.ToString(10), quotient.ToString(10), remainder.ToString(10),
                                          p[1].ToString(10));
                        */
                q[0] = q[1];
                r[0] = r[1];
                q[1] = quotient;
                r[1] = remainder;

                a = b;
                b = remainder;

                step++;
            }

            if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
            {
                throw new ArithmeticException("No inverse!");
            }

            BigInteger result = (p[0] - (p[1] * q[0])) % modulus;

            if ((result.data[maxLength - 1] & 0x80000000) != 0)
            {
                result += modulus; // get the least positive modulus
            }

            return result;
        }
Example #29
0
        /// <summary>
        /// </summary>
        /// <param name="exp">
        /// </param>
        /// <param name="n">
        /// </param>
        /// <returns>
        /// </returns>
        /// <exception cref="ArithmeticException">
        /// </exception>
        public BigInteger modPow(BigInteger exp, BigInteger n)
        {
            if ((exp.data[maxLength - 1] & 0x80000000) != 0)
            {
                throw new ArithmeticException("Positive exponents only.");
            }

            BigInteger resultNum = 1;
            BigInteger tempNum;
            bool thisNegative = false;

            if ((this.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative this
                tempNum = -this % n;
                thisNegative = true;
            }
            else
            {
                tempNum = this % n; // ensures (tempNum * tempNum) < b^(2k)
            }

            if ((n.data[maxLength - 1] & 0x80000000) != 0)
            {
                // negative n
                n = -n;
            }

            // calculate constant = b^(2k) / m
            BigInteger constant = new BigInteger();

            int i = n.dataLength << 1;
            constant.data[i] = 0x00000001;
            constant.dataLength = i + 1;

            constant = constant / n;
            int totalBits = exp.bitCount();
            int count = 0;

            // perform squaring and multiply exponentiation
            for (int pos = 0; pos < exp.dataLength; pos++)
            {
                uint mask = 0x01;

                // Console.WriteLine("pos = " + pos);
                for (int index = 0; index < 32; index++)
                {
                    if ((exp.data[pos] & mask) != 0)
                    {
                        resultNum = this.BarrettReduction(resultNum * tempNum, n, constant);
                    }

                    mask <<= 1;

                    tempNum = this.BarrettReduction(tempNum * tempNum, n, constant);

                    if (tempNum.dataLength == 1 && tempNum.data[0] == 1)
                    {
                        if (thisNegative && (exp.data[0] & 0x1) != 0)
                        {
                            // odd exp
                            return -resultNum;
                        }

                        return resultNum;
                    }

                    count++;
                    if (count == totalBits)
                    {
                        break;
                    }
                }
            }

            if (thisNegative && (exp.data[0] & 0x1) != 0)
            {
                // odd exp
                return -resultNum;
            }

            return resultNum;
        }
Example #30
0
        // least significant bits at lower part of buffer

        // ***********************************************************************
        // Overloading of the NOT operator (1's complement)
        // ***********************************************************************

        /// <summary>
        /// </summary>
        /// <param name="bi1">
        /// </param>
        /// <returns>
        /// </returns>
        public static BigInteger operator ~(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            for (int i = 0; i < maxLength; i++)
            {
                result.data[i] = ~bi1.data[i];
            }

            result.dataLength = maxLength;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
            {
                result.dataLength--;
            }

            return result;
        }