public static object ConvertToJavaTypes(object value) { if (value is Boolean) return new java.lang.Boolean((bool)value); if (value is int) return new java.lang.Integer((int)value); if (value is Int64) return new java.lang.Long((Int64)value); if (value is double) return new java.lang.Double((double)value); if (value is DateTime) { var datetime = (DateTime) value; return new java.util.Date( datetime.Year, datetime.Month, datetime.Day, datetime.Hour, datetime.Minute, datetime.Second); } if (value is string) return java.lang.String.valueOf(value); if (value is IEnumerable) { var enumerable = value as IEnumerable; var iterable = new java.util.ArrayList(); foreach (var resultItem in enumerable) { iterable.Add(resultItem); } return iterable; } return value; }
/// <summary> /// Converts list of integer to arraylist of java integers /// </summary> /// <param name="intList">the list of integer to convert</param> /// <returns>the converted list of integers as arraylist of java integers</returns> public static java.util.ArrayList ToJavaIntList(List <int> intList) { java.util.ArrayList javalist = new java.util.ArrayList(); foreach (int i in intList) { javalist.Add(ToJavaInt(i)); } return(javalist); }
public List <double> testMLPUsingWeka(string[] attributeArray, string[] classNames, double[] dataValues, string classHeader, string defaultclass, string modelName, int hiddelLayers = 7, double learningRate = 0.03, double momentum = 0.4, int decimalPlaces = 2, int trainingTime = 1000) { java.util.ArrayList classLabel = new java.util.ArrayList(); foreach (string className in classNames) { classLabel.Add(className); } weka.core.Attribute classHeaderName = new weka.core.Attribute(classHeader, classLabel); java.util.ArrayList attributeList = new java.util.ArrayList(); foreach (string attribute in attributeArray) { weka.core.Attribute newAttribute = new weka.core.Attribute(attribute); attributeList.Add(newAttribute); } attributeList.add(classHeaderName); weka.core.Instances data = new weka.core.Instances("TestInstances", attributeList, 0); data.setClassIndex(data.numAttributes() - 1); // Set instance's values for the attributes weka.core.Instance inst_co = new DenseInstance(data.numAttributes()); for (int i = 0; i < data.numAttributes() - 1; i++) { inst_co.setValue(i, dataValues.ElementAt(i)); } inst_co.setValue(classHeaderName, defaultclass); data.add(inst_co); java.io.File path = new java.io.File("/models/"); weka.classifiers.functions.MultilayerPerceptron clRead = loadModel(modelName, path); clRead.setHiddenLayers(hiddelLayers.ToString()); clRead.setLearningRate(learningRate); clRead.setMomentum(momentum); clRead.setNumDecimalPlaces(decimalPlaces); clRead.setTrainingTime(trainingTime); weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize(); myRandom.setInputFormat(data); data = weka.filters.Filter.useFilter(data, myRandom); double classValue = clRead.classifyInstance(data.get(0)); double[] predictionDistribution = clRead.distributionForInstance(data.get(0)); List <double> predictionDistributions = new List <double>(); for (int predictionDistributionIndex = 0; predictionDistributionIndex < predictionDistribution.Count(); predictionDistributionIndex++) { string classValueString1 = classLabel.get(predictionDistributionIndex).ToString(); double prob = predictionDistribution[predictionDistributionIndex] * 100; predictionDistributions.Add(prob); } List <double> prediction = new List <double>(); prediction.Add(classValue); prediction.AddRange(predictionDistributions); return(prediction); }
public static Instances GetInstancesForWeka(string[] domains, string[] labelsClass, Label status, ProgressBar progress) { java.util.ArrayList attributes = new java.util.ArrayList(); //Добавление атрибутов InputLayerWrapperMulti wrapper = new InputLayerWrapperMulti(); for (int i = 0; i < wrapper.namesAttributes.Length; i++) { attributes.Add(new weka.core.Attribute(wrapper.namesAttributes[i])); } java.util.ArrayList classes = new java.util.ArrayList(); foreach (var item in labelsClass.ToList().Distinct()) { classes.add(item); } attributes.Add(new weka.core.Attribute("class", classes)); //Метка класса Instances instances = new Instances($"Domains {DateTime.Now}", attributes, 0); int numAttributes = instances.numAttributes(); int countRows = domains.Length; for (int i = 0; i < countRows; i++) { instances.add(GetInstanceForWeka(domains[i], labelsClass[i], numAttributes)); progress.Invoke(new Action(() => { progress.Value = i; status.Text = $"{i}/{countRows}"; })); } return(instances); }
public string testEmotionUsingWeka(string[] attributeArray, string[] classNames, double[] dataValues, string classHeader, string defaultclass, string modelName, int hiddelLayers = 7, double learningRate = 0.03, double momentum = 0.4, int decimalPlaces = 2, int trainingTime = 1000) { List <double> predictions = testMLPUsingWeka(attributeArray, classNames, dataValues, classHeader, defaultclass, modelName, hiddelLayers, learningRate, momentum, decimalPlaces, trainingTime); java.util.ArrayList classLabel = new java.util.ArrayList(); foreach (string className in classNames) { classLabel.Add(className); } string classValueString = classLabel.get(Int32.Parse(predictions.ElementAt(0).ToString())).ToString(); return(classValueString); }
public static object ConvertToJavaTypes(object value) { if (value is Boolean) { return(new java.lang.Boolean((bool)value)); } if (value is int) { return(new java.lang.Integer((int)value)); } if (value is Int64) { return(new java.lang.Long((Int64)value)); } if (value is double) { return(new java.lang.Double((double)value)); } if (value is DateTime) { var datetime = (DateTime)value; return(new java.util.Date( datetime.Year, datetime.Month, datetime.Day, datetime.Hour, datetime.Minute, datetime.Second)); } if (value is string) { return(java.lang.String.valueOf(value)); } if (value is IEnumerable) { var enumerable = value as IEnumerable; var iterable = new java.util.ArrayList(); foreach (var resultItem in enumerable) { iterable.Add(resultItem); } return(iterable); } return(value); }
public string testHybridEmotionUsingWeka(string[] attributeArray, string[] classNames, double[] dataValues, string classHeader, string defaultclass, string modelName) { java.util.ArrayList classLabel = new java.util.ArrayList(); foreach (string className in classNames) { classLabel.Add(className); } weka.core.Attribute classHeaderName = new weka.core.Attribute(classHeader, classLabel); java.util.ArrayList attributeList = new java.util.ArrayList(); foreach (string attribute in attributeArray) { weka.core.Attribute newAttribute = new weka.core.Attribute(attribute); attributeList.Add(newAttribute); } attributeList.add(classHeaderName); weka.core.Instances data = new weka.core.Instances("TestInstances", attributeList, 0); data.setClassIndex(data.numAttributes() - 1); // Set instance's values for the attributes weka.core.Instance inst_co = new DenseInstance(data.numAttributes()); for (int i = 0; i < data.numAttributes() - 1; i++) { inst_co.setValue(i, dataValues.ElementAt(i)); } inst_co.setValue(classHeaderName, defaultclass); data.add(inst_co); java.io.File path = new java.io.File("/models/"); weka.classifiers.meta.Bagging clRead = loadBaggingModel(modelName, path); weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize(); myRandom.setInputFormat(data); data = weka.filters.Filter.useFilter(data, myRandom); double classValue = clRead.classifyInstance(data.get(0)); string classValueString = classLabel.get(Int32.Parse(classValue.ToString())).ToString(); return(classValueString); }
public static void CreateArffFiles() { java.util.ArrayList atts; java.util.ArrayList attsRel; java.util.ArrayList attVals; java.util.ArrayList attValsRel; Instances data; Instances dataRel; double[] vals; double[] valsRel; int i; // 1. set up attributes atts = new java.util.ArrayList(); // - numeric atts.Add(new weka.core.Attribute("att1")); // - nominal attVals = new java.util.ArrayList(); for (i = 0; i < 5; i++) { attVals.add("val" + (i + 1)); } weka.core.Attribute nominal = new weka.core.Attribute("att2", attVals); atts.add(nominal); // - string atts.add(new weka.core.Attribute("att3", (java.util.ArrayList)null)); // - date atts.add(new weka.core.Attribute("att4", "yyyy-MM-dd")); // - relational attsRel = new java.util.ArrayList(); // -- numeric attsRel.add(new weka.core.Attribute("att5.1")); // -- nominal attValsRel = new java.util.ArrayList(); for (i = 0; i < 5; i++) { attValsRel.Add("val5." + (i + 1)); } attsRel.add(new weka.core.Attribute("att5.2", attValsRel)); dataRel = new Instances("att5", attsRel, 0); atts.add(new weka.core.Attribute("att5", dataRel, 0)); // 2. create Instances object data = new Instances("MyRelation", atts, 0); // 3. fill with data // first instance vals = new double[data.numAttributes()]; // - numeric vals[0] = Math.PI; // - nominal vals[1] = attVals.indexOf("val3"); // - string vals[2] = data.attribute(2).addStringValue("This is a string!"); // - date vals[3] = data.attribute(3).parseDate("2001-11-09"); // - relational dataRel = new Instances(data.attribute(4).relation(), 0); // -- first instance valsRel = new double[2]; valsRel[0] = Math.PI + 1; valsRel[1] = attValsRel.indexOf("val5.3"); weka.core.Instance inst = new DenseInstance(2); inst.setValue(1, valsRel[0]); inst.setValue(1, valsRel[1]); dataRel.add(inst); // -- second instance valsRel = new double[2]; valsRel[0] = Math.PI + 2; valsRel[1] = attValsRel.indexOf("val5.2"); dataRel.add(inst); vals[4] = data.attribute(4).addRelation(dataRel); // add weka.core.Instance inst2 = new DenseInstance(4); inst2.setValue(1, vals[0]); inst2.setValue(1, vals[1]); inst2.setValue(1, vals[2]); inst2.setValue(1, vals[3]); data.add(inst2); // second instance vals = new double[data.numAttributes()]; // important: needs NEW array! // - numeric vals[0] = Math.E; // - nominal vals[1] = attVals.indexOf("val1"); // - string vals[2] = data.attribute(2).addStringValue("And another one!"); // - date vals[3] = data.attribute(3).parseDate("2000-12-01"); // - relational dataRel = new Instances(data.attribute(4).relation(), 0); // -- first instance valsRel = new double[2]; valsRel[0] = Math.E + 1; valsRel[1] = attValsRel.indexOf("val5.4"); dataRel.add(inst); // -- second instance valsRel = new double[2]; valsRel[0] = Math.E + 2; valsRel[1] = attValsRel.indexOf("val5.1"); dataRel.add(inst); vals[4] = data.attribute(4).addRelation(dataRel); // add data.add(inst2); data.setClassIndex(data.numAttributes() - 1); // 4. output data for (int x = 0; x < data.numInstances(); x++) { weka.core.Instance ins = data.instance(x); System.Console.WriteLine(ins.value(x).ToString()); } return; }
public List <double> testSMOUsingWeka(string[] attributeArray, string[] classNames, double[] dataValues, string classHeader, string defaultclass, string modelName, int hiddelLayers = 7, double learningRate = 0.03, double momentum = 0.4, int decimalPlaces = 2, int trainingTime = 1000) { java.util.ArrayList classLabel = new java.util.ArrayList(); foreach (string className in classNames) { classLabel.Add(className); } weka.core.Attribute classHeaderName = new weka.core.Attribute(classHeader, classLabel); java.util.ArrayList attributeList = new java.util.ArrayList(); foreach (string attribute in attributeArray) { weka.core.Attribute newAttribute = new weka.core.Attribute(attribute); attributeList.Add(newAttribute); } attributeList.add(classHeaderName); weka.core.Instances data = new weka.core.Instances("TestInstances", attributeList, 0); data.setClassIndex(data.numAttributes() - 1); // Set instance's values for the attributes weka.core.Instance inst_co = new DenseInstance(data.numAttributes()); for (int i = 0; i < data.numAttributes() - 1; i++) { inst_co.setValue(i, Math.Round(dataValues.ElementAt(i), 5)); } inst_co.setValue(classHeaderName, defaultclass); data.add(inst_co); weka.core.Instance currentInst = data.get(0); int j = 0; //foreach (float value in dataValues) //{ // // double roundedValue = Math.Round(value); // //var rounded = Math.Floor(value * 100) / 100; // if (array.ElementAt(j) != value) // { // System.Console.WriteLine("Masla occur"); // } // j++; //} //double predictedClass = cl.classifyInstance(data.get(0)); weka.classifiers.functions.SMO clRead = new weka.classifiers.functions.SMO(); try { java.io.File path = new java.io.File("/models/"); clRead = loadSMOModel(modelName, path); } catch (Exception e) { //string p1 = Assembly.GetExecutingAssembly().Location; string ClassifierName = Path.GetFileName(Path.GetFileName(modelName)); string Path1 = HostingEnvironment.MapPath(@"~//libs//models//" + ClassifierName); //string Path1 = HostingEnvironment.MapPath(@"~//libs//models//FusionCustomized.model"); clRead = (weka.classifiers.functions.SMO)weka.core.SerializationHelper.read(modelName); } // weka.classifiers.functions.SMO clRead = loadSMOModel(modelName, path); clRead.setBatchSize("100"); clRead.setCalibrator(new weka.classifiers.functions.Logistic()); clRead.setKernel(new weka.classifiers.functions.supportVector.PolyKernel()); clRead.setEpsilon(1.02E-12); clRead.setC(1.0); clRead.setDebug(false); clRead.setChecksTurnedOff(false); clRead.setFilterType(new SelectedTag(weka.classifiers.functions.SMO.FILTER_NORMALIZE, weka.classifiers.functions.SMO.TAGS_FILTER)); double classValue = clRead.classifyInstance(data.get(0)); double[] predictionDistribution = clRead.distributionForInstance(data.get(0)); //for (int predictionDistributionIndex = 0; // predictionDistributionIndex < predictionDistribution.Count(); // predictionDistributionIndex++) //{ // string classValueString1 = classLabel.get(predictionDistributionIndex).ToString(); // double prob= predictionDistribution[predictionDistributionIndex]*100; // System.Console.WriteLine(classValueString1 + ":" + prob); //} List <double> prediction = new List <double>(); prediction.Add(classValue); //prediction.AddRange(predictionDistribution); return(prediction); }