public WebClassifierResultSet(DocumentSetClasses _setClassCollection, experimentExecutionContext _context, IFVExtractorSettings _extractorSettings) { setClassCollection = _setClassCollection; featureVectors = new WebSiteClassifierResult(_setClassCollection, _extractorSettings); items.Add(INPUTSET_NAME, featureVectors); List <IWebPostClassifier> classifiers = new List <IWebPostClassifier>(); for (int i = 0; i < _context.setup.classifiers.Count; i++) { classifiers.Add(_context.setup.classifiers[i]); } Thread.Sleep(100); if (classifiers.Count < _context.setup.classifiers.Count) { aceLog.log("::: MULTITHREADING --- CLASSIFIERS COUNT MISTMATCHED --- AUTOCORRECTION APPLIED :::"); for (int i = classifiers.Count - 1; i < _context.setup.classifiers.Count; i++) { classifiers.Add(_context.setup.classifiers[i]); } } foreach (var cs in classifiers) { items.Add(cs.name, new WebSiteClassifierResult(_setClassCollection, _extractorSettings)); } }
public experimentReport(experimentExecutionContext _context) { context = _context; experiment = context.setup; StartTime = DateTime.Now.ToLongTimeString(); start = DateTime.Now; }
public void connectContext(experimentExecutionContext _context, IWebFVExtractor _fve) { context = _context; extractor = _fve; caseFolder = folder.Add("cases", "Cases", "Directory with serialized DocumentSetCase knowledge, shared among k-fold validation folds for faster execution."); foreach (kFoldValidationCase setCase in items) { setCase.context = context; setCase.extractor = _fve; setCase.trainingCases.connectContext(this, setCase); setCase.evaluationCases.connectContext(this, setCase); } knowledgeLibrary = new WebFVExtractorKnowledgeLibrary(this); }
public DataTable GetAverageTable(experimentExecutionContext context) { objectTable <DocumentSetCaseCollectionReport> tp = new objectTable <DocumentSetCaseCollectionReport>(nameof(DocumentSetCaseCollectionReport.Name), parent.validationCase.name + "_avg"); foreach (var pair in avgReports) { tp.Add(pair.Value); } DataTable output = tp.GetDataTable(); String foldName = parent.validationCase.name; parent.validationCase.context.AddExperimentInfo(output); output.SetDescription($"Aggregates of [{foldName}] evaluation - only averages"); output.SetAdditionalInfoEntry("Report type", "Average per classifier"); //output.AddExtra("Most relevant rows are annoted with [(mean)] word"); return(output); }
public DataTable GetFullValidationTable(experimentExecutionContext context) { objectTable <DocumentSetCaseCollectionReport> tp = new objectTable <DocumentSetCaseCollectionReport>(nameof(DocumentSetCaseCollectionReport.Name), parent.validationCase.name + "_avg"); foreach (var pair in this) { foreach (var r in pair.Value) { tp.Add(r); } } DataTable output = tp.GetDataTable(); String foldName = parent.validationCase.name; parent.validationCase.context.AddExperimentInfo(output); output.SetDescription($"Results of fold [{foldName}] evaluation, with all entries"); output.SetAdditionalInfoEntry("Report type", "All entries"); output.AddExtra("Most relevant rows are annoted with [(mean)] word"); return(output); }
/// <summary> /// Prepares for parallel execution. /// </summary> /// <param name="tools">The tools.</param> /// <param name="_context">The context.</param> public webProjectKnowledgeSet PrepareForParallelExecution(classifierTools tools, experimentExecutionContext _context) { if (caseKnowledgeSet == null) { caseKnowledgeSet = new webProjectKnowledgeSet(); } if (items.Any()) { experimentContext.notes.log("Mining Context was ready already."); return(caseKnowledgeSet); } DateTime startTime = DateTime.Now; experimentContext = _context; List <webCaseKnowledge> cases = new List <webCaseKnowledge>(); folderNode classReportFolder = experimentContext.folder.Add("General", "General and diagnostic reports", "The folder contains general (outside k-folds) reports on analysied industries (categories), web sites and other diagnostic data"); // <---------------------------------------------------------------------------------------------------------------- [ performing pipeline ] experimentContext.notes.log("Executing the Mining Context decomposition with the pipeline model"); foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses()) { var pipelineContext = GetContextForPipeline(tools, classSet); sitesByCategory.Add(classSet, new List <pipelineTaskMCSiteSubject>()); if (!pipelineContext.exitByType.ContainsKey(typeof(pipelineTaskMCSiteSubject))) { throw new aceGeneralException("Pipeline context output contains no web site subjects! Check the pipeline Site Task constructor.", null, pipelineContext, "Pipeline broken"); } var sitesForContext = pipelineContext.exitByType[typeof(pipelineTaskMCSiteSubject)]; // <----- preparing foreach (var site in sitesForContext) { tokenBySite.Add(site as pipelineTaskMCSiteSubject, new ConcurrentBag <pipelineTaskSubjectContentToken>()); sitesByCategory[classSet].Add(site as pipelineTaskMCSiteSubject); webCaseKnowledge webCase = new webCaseKnowledge(site as pipelineTaskMCSiteSubject, classSet); caseKnowledgeSet.Add(webCase); cases.Add(webCase); } semanticFVExtractorKnowledge kn = new semanticFVExtractorKnowledge(); kn.name = classSet.name + "_general"; kn.relatedItemPureName = classSet.name; kn.type = WebFVExtractorKnowledgeType.aboutCompleteCategory; kn.Deploy(classReportFolder, experimentContext.logger); knowledgeByClass.TryAdd(classSet, kn); } experimentContext.notes.log("Sorting tokens for all sites [in parallel]"); Parallel.ForEach(tokenBySite.Keys, site => { var leafs = site.getAllLeafs(); foreach (var leaf in leafs) { pipelineTaskSubjectContentToken token = leaf as pipelineTaskSubjectContentToken; if (token != null) { tokenBySite[site].Add(token); } } }); foreach (var c in cases) { c.tokens = tokenBySite[c.MCSiteSubject]; } experimentContext.notes.log("Building diagnostic TF-IDF master tables for all classes [in parallel]"); Boolean useIntegratedApproach = false; if (useIntegratedApproach) { var valCase = experimentContext.validationCollections[experimentContext.masterExtractor.name].GetDiagnosticCase(experimentContext.classes); Parallel.ForEach(sitesByCategory, pair => { knowledgeByClass.TryAdd(pair.Key, experimentContext.masterExtractor.DoFVExtractionForClassViaCases(valCase.trainingCases[pair.Key.classID], pair.Key, valCase, experimentContext.tools, experimentContext.logger)); }); } else { Parallel.ForEach(sitesByCategory, pair => { IDocumentSetClass category = pair.Key; List <pipelineTaskMCSiteSubject> sites = pair.Value; var lt = BuildLemmaTableForClass(tools, category, sites); lt.Save(); // lt.SaveAs(classReportFolder.pathFor(lt.info.Name), imbSCI.Data.enums.getWritableFileMode.overwrite); }); } experimentContext.notes.log("Saving lexic resource cache subset - for later reuse in case of repeated experiment run"); tools.SaveCache(); if (!useIntegratedApproach) { experimentContext.notes.log("Performing chunk construction for all web sites in all categories [in serial]"); foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses()) { BuildChunksForClass(tools, classSet); } foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses()) { experimentContext.masterExtractor.chunkTableConstructor.process(chunksByCategory[classSet], cnt_level.mcPage, knowledgeByClass[classSet].WLChunkTableOfIndustryClass, null, experimentContext.logger, false); } } if (tools.operation.doCreateDiagnosticMatrixAtStart) { experimentContext.notes.log("Performing diagnostic analysis on all categories...[doCreateDiagnosticMatrixAtStart=true]"); folderNode matrixReport = classReportFolder.Add("clouds", "More reports on semantic cloud", "Directory contains exported DirectedGraphs, varous matrix derivates, combined cloud and other diagnostic things"); List <lemmaSemanticCloud> clouds = new List <lemmaSemanticCloud>(); List <lemmaSemanticCloud> filteredClouds = new List <lemmaSemanticCloud>(); var converter = lemmaSemanticCloud.GetDGMLConverter(); foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses()) { // experimentContext.masterExtractor.chunkTableConstructor.process(chunksByCategory[classSet], cnt_level.mcPage, knowledgeByClass[classSet].WLChunkTableOfIndustryClass, null, experimentContext.logger, false); var cloud = experimentContext.masterExtractor.CloudConstructor.process(knowledgeByClass[classSet].WLChunkTableOfIndustryClass, knowledgeByClass[classSet].WLTableOfIndustryClass, knowledgeByClass[classSet].semanticCloud, experimentContext.logger, tokenBySite.Keys.ToList(), tools.GetLemmaResource()); knowledgeByClass[classSet].semanticCloud.className = classSet.name; clouds.Add(cloud); if (experimentContext.tools.operation.doUseSimpleGraphs) { cloud.GetSimpleGraph(true).Save(matrixReport.pathFor("cloud_initial_" + classSet.name, imbSCI.Data.enums.getWritableFileMode.none, "Initial version of full-sample set, diagnostic Semantic Cloud for category [" + classSet.name + "]")); } else { converter.ConvertToDMGL(cloud).Save(matrixReport.pathFor("cloud_initial_" + classSet.name, imbSCI.Data.enums.getWritableFileMode.none, "Initial version of full-sample set, diagnostic Semantic Cloud for category [" + classSet.name + "]")); } knowledgeByClass[classSet].semanticCloudFiltered = knowledgeByClass[classSet].semanticCloud.CloneIntoType <lemmaSemanticCloud>(true); knowledgeByClass[classSet].semanticCloudFiltered.className = classSet.name; filteredClouds.Add(knowledgeByClass[classSet].semanticCloudFiltered); } cloudMatrix matrix = new cloudMatrix("CloudMatrix", "Diagnostic cloud matrix created from the complete sample set of [" + clouds.Count() + "] classes"); matrix.build(filteredClouds, experimentContext.logger); lemmaSemanticCloud mergedCloudInitial = matrix.GetUnifiedCloud(); mergedCloudInitial.Save(matrixReport.pathFor("unified_initial_cloud.xml", imbSCI.Data.enums.getWritableFileMode.overwrite, "Serialized object - Initial version of Semantic Cloud built as union of full-sample set Semantic Clouds of all categories")); var reductions = matrix.TransformClouds(experimentContext.masterExtractor.settings.semanticCloudFilter, experimentContext.logger); var p = matrixReport.pathFor("reductions_nodes.txt", imbSCI.Data.enums.getWritableFileMode.overwrite, "Report on Cloud Matrix transformation process"); File.WriteAllLines(p, reductions); matrix.BuildTable(experimentContext.masterExtractor.settings.semanticCloudFilter, cloudMatrixDataTableType.initialState | cloudMatrixDataTableType.maxCloudFrequency | cloudMatrixDataTableType.absoluteValues).GetReportAndSave(matrixReport, appManager.AppInfo, "matrix_max_cf_initial", true, experimentContext.tools.operation.doReportsInParalell); matrix.BuildTable(experimentContext.masterExtractor.settings.semanticCloudFilter, cloudMatrixDataTableType.initialState | cloudMatrixDataTableType.overlapSize | cloudMatrixDataTableType.absoluteValues).GetReportAndSave(matrixReport, appManager.AppInfo, "matrix_overlap_size_initial", true, experimentContext.tools.operation.doReportsInParalell); matrix.BuildTable(experimentContext.masterExtractor.settings.semanticCloudFilter, cloudMatrixDataTableType.initialState | cloudMatrixDataTableType.overlapValue | cloudMatrixDataTableType.absoluteValues).GetReportAndSave(matrixReport, appManager.AppInfo, "matrix_overlap_value_initial", true, experimentContext.tools.operation.doReportsInParalell); matrix.ExportTextReports(matrixReport, true, "matrix_cf"); matrix.ExportTextReports(matrixReport, false, "matrix_cf"); lemmaSemanticCloud mergedCloudAfterReduction = matrix.GetUnifiedCloud(); mergedCloudAfterReduction.Save(matrixReport.pathFor("unified_reduced_cloud.xml", imbSCI.Data.enums.getWritableFileMode.overwrite, "Serialized object -Version of all-categories diagnostic Semantic Cloud, after Cloud Matrix filter was applied")); if (experimentContext.tools.operation.doUseSimpleGraphs) { mergedCloudInitial.GetSimpleGraph(true).Save(matrixReport.pathFor("unified_initial_cloud", imbSCI.Data.enums.getWritableFileMode.overwrite, "DirectedGraphML file - unified Semantic Cloud, before Cloud Matrix filter was applied - Open this in VisualStudo)")); } else { converter = lemmaSemanticCloud.GetDGMLConverter(); converter.ConvertToDMGL(mergedCloudInitial).Save(matrixReport.pathFor("unified_initial_cloud", imbSCI.Data.enums.getWritableFileMode.overwrite, "DirectedGraphML file - unified Semantic Cloud, before Cloud Matrix filter was applied - Open this in VisualStudo)")); } // <-------- analysis ----------------------------------------------------------------------------------- DataTableTypeExtended <freeGraphReport> cloudReports = new DataTableTypeExtended <freeGraphReport>(); foreach (var cl in filteredClouds) { freeGraphReport fgReport = new freeGraphReport(cl); fgReport.Save(matrixReport); cloudReports.AddRow(fgReport); } freeGraphReport unifiedReport = new freeGraphReport(mergedCloudAfterReduction); unifiedReport.Save(matrixReport); cloudReports.AddRow(unifiedReport); cloudReports.GetReportAndSave(matrixReport, appManager.AppInfo, "analysis_SemanticClouds"); // <-------- analysis ----------------------------------------------------------------------------------- foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses()) { var cloud = knowledgeByClass[classSet].semanticCloudFiltered; // .WLChunkTableOfIndustryClass, knowledgeByClass[classSet].WLTableOfIndustryClass, knowledgeByClass[classSet].semanticCloud, experimentContext.logger, tokenBySite.Keys.ToList()); if (experimentContext.tools.operation.doUseSimpleGraphs) { cloud.GetSimpleGraph(true).Save(matrixReport.pathFor("unified_initial_cloud", imbSCI.Data.enums.getWritableFileMode.overwrite, "DirectedGraphML file - unified Semantic Cloud, before Cloud Matrix filter was applied - Open this in VisualStudo)")); } else { converter = lemmaSemanticCloud.GetDGMLConverter(); converter.ConvertToDMGL(cloud).Save(matrixReport.pathFor("unified_initial_cloud", imbSCI.Data.enums.getWritableFileMode.overwrite, "DirectedGraphML file - unified Semantic Cloud, before Cloud Matrix filter was applied - Open this in VisualStudo)")); } //converter.ConvertToDMGL(cloud).Save(matrixReport.pathFor("cloud_reduced_" + classSet.name, imbSCI.Data.enums.getWritableFileMode.none, "DirectedGraphML file - Initial version of Semantic Cloud built as union of full-sample set Semantic Clouds of all categories (Open this with VS)"), imbSCI.Data.enums.getWritableFileMode.overwrite); } instanceCountCollection <String> tfcounter = new instanceCountCollection <string>(); foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses()) { var wlt = knowledgeByClass[classSet].WLTableOfIndustryClass.GetDataTable(); wlt.DefaultView.Sort = "termFrequency desc"; var sorted = wlt.DefaultView.ToTable(); var tbl = wlt.GetClonedShema <DataTable>(true); tbl.CopyRowsFrom(sorted, 0, 100); tbl.GetReportAndSave(classReportFolder, appManager.AppInfo, classSet.name + "_WebLemma", true, experimentContext.tools.operation.doReportsInParalell); var cht = knowledgeByClass[classSet].WLChunkTableOfIndustryClass.GetDataTable(); cht.DefaultView.Sort = "termFrequency desc"; var csorted = cht.DefaultView.ToTable(); tbl = cht.GetClonedShema <DataTable>(true); tbl.CopyRowsFrom(csorted, 0, 100); tbl.GetReportAndSave(classReportFolder, appManager.AppInfo, classSet.name + "_Chunks", true, experimentContext.tools.operation.doReportsInParalell); tfcounter.AddInstanceRange(knowledgeByClass[classSet].WLTableOfIndustryClass.unresolved); knowledgeByClass[classSet].OnBeforeSave(); } List <String> countSorted = tfcounter.getSorted(); StringBuilder sb = new StringBuilder(); foreach (String s in countSorted) { sb.AppendLine(String.Format("{1} : {0}", s, tfcounter[s])); } String pt = classReportFolder.pathFor("unresolved_tokens.txt", imbSCI.Data.enums.getWritableFileMode.none, "Cloud Frequency list of all unresolved letter-only tokens"); File.WriteAllText(pt, sb.ToString()); } if (tools.operation.doFullDiagnosticReport) { experimentContext.notes.log("Generating full diagnostic report on classes..."); DataTable rep = null; foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses()) { rep = this.GetClassKnowledgeReport(classSet, rep); } rep.SetAdditionalInfoEntry("Experiment", experimentContext.setup.name); rep.AddExtra("Experiment: " + experimentContext.setup.name); rep.AddExtra("Info: " + experimentContext.setup.description); rep.SetDescription("Structural report for all classes in the experiment"); rep.GetReportAndSave(classReportFolder, appManager.AppInfo, "structural_class_report", true, experimentContext.tools.operation.doReportsInParalell); } classReportFolder.generateReadmeFiles(appManager.AppInfo); experimentContext.notes.log("Mining Context preprocessing done in [" + DateTime.Now.Subtract(startTime).TotalMinutes.ToString("F2") + "] minutes"); return(caseKnowledgeSet); }
public void MakeReports(experimentExecutionContext context, folderNode folder) { meanClassifierReport = new DocumentSetCaseCollectionReport(extractor.name); aceDictionary2D <IWebPostClassifier, kFoldValidationCase, DocumentSetCaseCollectionReport> tempStructure = new aceDictionary2D <IWebPostClassifier, kFoldValidationCase, DocumentSetCaseCollectionReport>(); DSCCReports firstCase = null; List <IWebPostClassifier> classifiers = new List <IWebPostClassifier>(); foreach (var kFoldCasePair in this) { if (firstCase == null) { firstCase = kFoldCasePair.Value; } foreach (var pair in kFoldCasePair.Value.avgReports) { tempStructure[pair.Key, kFoldCasePair.Key] = pair.Value; if (!classifiers.Contains(pair.Key)) { classifiers.Add(pair.Key); } } } // DataSet dataSet = new DataSet(context.setup.name); // <---------- CREATING AVERAGE TABLE ----------------------------------------------------- var tpAvgMacro = new DataTableTypeExtended <DocumentSetCaseCollectionReport>(context.setup.name + " summary", "Cross k-fold averages measures, fold-level measures are computed by macro-average method"); var tpAvgMicro = new DataTableTypeExtended <DocumentSetCaseCollectionReport>(context.setup.name + " summary", "Cross k-fold averages measures, fold-level measures are computed by micro-average method"); List <DocumentSetCaseCollectionReport> macroaverages = new List <DocumentSetCaseCollectionReport>(); DataTableTypeExtended <DocumentSetCaseCollectionReport> EMperKFolds = new DataTableTypeExtended <DocumentSetCaseCollectionReport>(extractor.name + "_allReports"); foreach (IWebPostClassifier classifier in classifiers) { // < ---- report on each classifier context.logger.log("-- producing report about [" + classifier.name + "]"); //objectTable<DocumentSetCaseCollectionReport> tp = new objectTable<DocumentSetCaseCollectionReport>(nameof(DocumentSetCaseCollectionReport.Name), classifier + "_sum"); DocumentSetCaseCollectionReport avg = new DocumentSetCaseCollectionReport(classifier.name + " macro-averaging, k-fold avg. "); DocumentSetCaseCollectionReport rep_eval = new DocumentSetCaseCollectionReport(classifier.name + " micro-averaging, k-fold avg."); rep_eval.Classifier = classifier.name; classificationEvalMetricSet metrics = new classificationEvalMetricSet(); classificationEval eval = new classificationEval(); //eval = metrics[classifier.name]; Int32 c = 0; foreach (KeyValuePair <kFoldValidationCase, DSCCReports> kFoldCasePair in this) { DocumentSetCaseCollectionReport rep = kFoldCasePair.Value.avgReports[classifier]; kFoldValidationCase vCase = kFoldCasePair.Key; classificationEvalMetricSet met = rep.GetSetMetrics(); if (met != null) { foreach (IDocumentSetClass cl in context.classes.GetClasses()) { eval = eval + met[cl.name]; } } rep.Name = classifier.name + "_" + vCase.name; avg.AddValues(rep); EMperKFolds.AddRow(rep); c++; } rep_eval.AddValues(metrics, classificationMetricComputation.microAveraging); avg.Classifier = classifier.name; avg.DivideValues(c); // <<< detecting the best performed classifier in all evaluation folds if (avg.F1measure > highestF1Value) { highestF1Value = avg.F1measure; topClassifierReport = avg; } meanClassifierReport.AddValues(avg); // ----------------- EMperKFolds.AddRow(avg); tpAvgMacro.AddRow(avg); macroaverages.Add(avg); if (DOMAKE_MICROaverage) { tpAvgMicro.AddRow(rep_eval); } // tp.Add(rep_eval); if (context.tools.operation.DoMakeReportForEachClassifier) { DataTable cTable = EMperKFolds; cTable.SetTitle($"{classifier.name} report"); cTable.SetDescription("Summary " + context.setup.validationSetup.k + "-fold validation report for [" + classifier.name + "]"); cTable.SetAdditionalInfoEntry("FV Extractor", extractor.name); cTable.SetAdditionalInfoEntry("Classifier", classifier.name); cTable.SetAdditionalInfoEntry("Class name", classifier.GetType().Name); cTable.SetAdditionalInfoEntry("Correct", rep_eval.Correct); cTable.SetAdditionalInfoEntry("Wrong", rep_eval.Wrong); //cTable.SetAdditionalInfoEntry("Precision", rep_eval.Precision); //cTable.SetAdditionalInfoEntry("Recall", rep_eval.Recall); //cTable.SetAdditionalInfoEntry("F1", rep_eval.F1measure); cTable.SetAdditionalInfoEntry("True Positives", metrics[classifier.name].truePositives); cTable.SetAdditionalInfoEntry("False Negatives", metrics[classifier.name].falseNegatives); cTable.SetAdditionalInfoEntry("False Positives", metrics[classifier.name].falsePositives); cTable.AddExtra("Classifier: " + classifier.name + " [" + classifier.GetType().Name + "]"); var info = classifier.DescribeSelf(); info.ForEach(x => cTable.AddExtra(x)); cTable.AddExtra("-----------------------------------------------------------------------"); cTable.AddExtra("Precision, Recall and F1 measures expressed in this table are computed by macroaveraging shema"); // output.CopyRowsFrom(cTable); cTable.GetReportAndSave(folder, appManager.AppInfo, extractor.name + "_classifier_" + classifier.name); // dataSet.AddTable(cTable); } } rangeFinderForDataTable rangerMacro = new rangeFinderForDataTable(tpAvgMacro, "Name"); meanClassifierReport.DivideValues(classifiers.Count); if (macroaverages.Count > 0) { Double maxF1 = macroaverages.Max(x => x.F1measure); Double minF1 = macroaverages.Min(x => x.F1measure); List <String> minCaseNames = macroaverages.Where(x => x.F1measure == minF1).Select(x => x.Name).ToList(); List <String> maxCaseNames = macroaverages.Where(x => x.F1measure == maxF1).Select(x => x.Name).ToList(); var style = EMperKFolds.GetRowMetaSet().SetStyleForRowsWithValue <String>(DataRowInReportTypeEnum.dataHighlightA, nameof(DocumentSetCaseCollectionReport.Name), maxCaseNames); EMperKFolds.GetRowMetaSet().AddUnit(style); // style = tpAvgMacro.GetRowMetaSet().SetStyleForRowsWithValue<String>(DataRowInReportTypeEnum.dataHighlightC, nameof(DocumentSetCaseCollectionReport.Name), minCaseNames); tpAvgMacro.SetAdditionalInfoEntry("FV Extractor", extractor.name); if (DOMAKE_MICROaverage) { tpAvgMicro.SetAdditionalInfoEntry("FV Extractor", extractor.name); } List <String> averageNames = macroaverages.Select(x => x.Name).ToList(); var avg_style = EMperKFolds.GetRowMetaSet().SetStyleForRowsWithValue <String>(DataRowInReportTypeEnum.dataHighlightC, nameof(DocumentSetCaseCollectionReport.Name), averageNames); foreach (var x in averageNames) { avg_style.AddMatch(x); } } // ::: ------------------------------------------------------------------------------------------------- ::: --------------------------------------------------------------------- ::: // tpAvgMacro.SetTitle($"{extractor.name} - macroaverage report"); if (DOMAKE_MICROaverage) { tpAvgMicro.SetTitle($"{extractor.name} - microaverage report"); } tpAvgMacro.AddExtra("Complete report on " + context.setup.validationSetup.k + "-fold validation FVE [" + extractor.name + "]"); tpAvgMacro.AddExtra("Fold-level P, R and F1 measures are computed by macroaveraging method, values here are cross k-fold means."); if (DOMAKE_MICROaverage) { tpAvgMicro.AddExtra("Complete " + context.setup.validationSetup.k + "-fold validation report for FVE [" + extractor.name + "]"); } if (DOMAKE_MICROaverage) { tpAvgMicro.AddExtra("Fold-level P, R and F1 measures are computed by microaveraging method, values here are cross k-fold means."); } context.AddExperimentInfo(tpAvgMacro); if (DOMAKE_MICROaverage) { context.AddExperimentInfo(tpAvgMicro); } tpAvgMacro.AddExtra(extractor.description); if (extractor is semanticFVExtractor) { semanticFVExtractor semExtractor = (semanticFVExtractor)extractor; semExtractor.termTableConstructor.DescribeSelf().ForEach(x => tpAvgMacro.AddExtra(x)); semExtractor.CloudConstructor.DescribeSelf().ForEach(x => tpAvgMacro.AddExtra(x)); semExtractor.termTableConstructor.DescribeSelf().ForEach(x => tpAvgMicro.AddExtra(x)); semExtractor.CloudConstructor.DescribeSelf().ForEach(x => tpAvgMicro.AddExtra(x)); } context.logger.log("-- producing summary reports on [" + extractor.name + "]"); rangerMacro.AddRangeRows("Macroaverage ", tpAvgMacro, true, imbSCI.Core.math.aggregation.dataPointAggregationType.min | imbSCI.Core.math.aggregation.dataPointAggregationType.max | imbSCI.Core.math.aggregation.dataPointAggregationType.avg | imbSCI.Core.math.aggregation.dataPointAggregationType.stdev); tpAvgMacro.GetReportAndSave(folder, appManager.AppInfo, extractor.name + "_macroaverage_report", true, true); EMperKFolds.AddExtra("The table shows average measures for each fold --- rows marked with colored background show averages for all folds, per classifier."); EMperKFolds.GetReportAndSave(folder, appManager.AppInfo, extractor.name + "_allFolds", true, true); if (DOMAKE_MICROaverage) { tpAvgMicro.GetReportAndSave(folder, appManager.AppInfo, extractor.name + "_microaverage_report", true, true); } //dataSet.GetReportVersion().serializeDataSet(extractor.name + "_classifiers_MultiSheetSummary", folder, imbSCI.Data.enums.reporting.dataTableExportEnum.excel, appManager.AppInfo); }