Example #1
0
        /*************************************************************************
        *  Rational least squares fitting, without weights and constraints.
        *
        *  See BarycentricFitFloaterHormannWC() for more information.
        *
        *  -- ALGLIB PROJECT --
        *    Copyright 18.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricfitfloaterhormann(ref double[] x,
                                                        ref double[] y,
                                                        int n,
                                                        int m,
                                                        ref int info,
                                                        ref barycentricinterpolant b,
                                                        ref barycentricfitreport rep)
        {
            double[] w  = new double[0];
            double[] xc = new double[0];
            double[] yc = new double[0];
            int[]    dc = new int[0];
            int      i  = 0;

            if (n < 1)
            {
                info = -1;
                return;
            }
            w = new double[n];
            for (i = 0; i <= n - 1; i++)
            {
                w[i] = 1;
            }
            barycentricfitfloaterhormannwc(ref x, ref y, ref w, n, ref xc, ref yc, ref dc, 0, m, ref info, ref b, ref rep);
        }
Example #2
0
        /*************************************************************************
        Internal Floater-Hormann fitting subroutine for fixed D
        *************************************************************************/
        private static void barycentricfitwcfixedd(double[] x,
            double[] y,
            double[] w,
            int n,
            double[] xc,
            double[] yc,
            int[] dc,
            int k,
            int m,
            int d,
            ref int info,
            ratint.barycentricinterpolant b,
            barycentricfitreport rep)
        {
            double[,] fmatrix = new double[0,0];
            double[,] cmatrix = new double[0,0];
            double[] y2 = new double[0];
            double[] w2 = new double[0];
            double[] sx = new double[0];
            double[] sy = new double[0];
            double[] sbf = new double[0];
            double[] xoriginal = new double[0];
            double[] yoriginal = new double[0];
            double[] tmp = new double[0];
            lsfitreport lrep = new lsfitreport();
            double v0 = 0;
            double v1 = 0;
            double mx = 0;
            ratint.barycentricinterpolant b2 = new ratint.barycentricinterpolant();
            int i = 0;
            int j = 0;
            int relcnt = 0;
            double xa = 0;
            double xb = 0;
            double sa = 0;
            double sb = 0;
            double decay = 0;
            int i_ = 0;

            x = (double[])x.Clone();
            y = (double[])y.Clone();
            w = (double[])w.Clone();
            xc = (double[])xc.Clone();
            yc = (double[])yc.Clone();
            info = 0;

            if( ((n<1 || m<2) || k<0) || k>=m )
            {
                info = -1;
                return;
            }
            for(i=0; i<=k-1; i++)
            {
                info = 0;
                if( dc[i]<0 )
                {
                    info = -1;
                }
                if( dc[i]>1 )
                {
                    info = -1;
                }
                if( info<0 )
                {
                    return;
                }
            }
            
            //
            // weight decay for correct handling of task which becomes
            // degenerate after constraints are applied
            //
            decay = 10000*math.machineepsilon;
            
            //
            // Scale X, Y, XC, YC
            //
            lsfitscalexy(ref x, ref y, ref w, n, ref xc, ref yc, dc, k, ref xa, ref xb, ref sa, ref sb, ref xoriginal, ref yoriginal);
            
            //
            // allocate space, initialize:
            // * FMatrix-   values of basis functions at X[]
            // * CMatrix-   values (derivatives) of basis functions at XC[]
            //
            y2 = new double[n+m];
            w2 = new double[n+m];
            fmatrix = new double[n+m, m];
            if( k>0 )
            {
                cmatrix = new double[k, m+1];
            }
            y2 = new double[n+m];
            w2 = new double[n+m];
            
            //
            // Prepare design and constraints matrices:
            // * fill constraints matrix
            // * fill first N rows of design matrix with values
            // * fill next M rows of design matrix with regularizing term
            // * append M zeros to Y
            // * append M elements, mean(abs(W)) each, to W
            //
            sx = new double[m];
            sy = new double[m];
            sbf = new double[m];
            for(j=0; j<=m-1; j++)
            {
                sx[j] = (double)(2*j)/(double)(m-1)-1;
            }
            for(i=0; i<=m-1; i++)
            {
                sy[i] = 1;
            }
            ratint.barycentricbuildfloaterhormann(sx, sy, m, d, b2);
            mx = 0;
            for(i=0; i<=n-1; i++)
            {
                barycentriccalcbasis(b2, x[i], ref sbf);
                for(i_=0; i_<=m-1;i_++)
                {
                    fmatrix[i,i_] = sbf[i_];
                }
                y2[i] = y[i];
                w2[i] = w[i];
                mx = mx+Math.Abs(w[i])/n;
            }
            for(i=0; i<=m-1; i++)
            {
                for(j=0; j<=m-1; j++)
                {
                    if( i==j )
                    {
                        fmatrix[n+i,j] = decay;
                    }
                    else
                    {
                        fmatrix[n+i,j] = 0;
                    }
                }
                y2[n+i] = 0;
                w2[n+i] = mx;
            }
            if( k>0 )
            {
                for(j=0; j<=m-1; j++)
                {
                    for(i=0; i<=m-1; i++)
                    {
                        sy[i] = 0;
                    }
                    sy[j] = 1;
                    ratint.barycentricbuildfloaterhormann(sx, sy, m, d, b2);
                    for(i=0; i<=k-1; i++)
                    {
                        alglib.ap.assert(dc[i]>=0 && dc[i]<=1, "BarycentricFit: internal error!");
                        ratint.barycentricdiff1(b2, xc[i], ref v0, ref v1);
                        if( dc[i]==0 )
                        {
                            cmatrix[i,j] = v0;
                        }
                        if( dc[i]==1 )
                        {
                            cmatrix[i,j] = v1;
                        }
                    }
                }
                for(i=0; i<=k-1; i++)
                {
                    cmatrix[i,m] = yc[i];
                }
            }
            
            //
            // Solve constrained task
            //
            if( k>0 )
            {
                
                //
                // solve using regularization
                //
                lsfitlinearwc(y2, w2, fmatrix, cmatrix, n+m, m, k, ref info, ref tmp, lrep);
            }
            else
            {
                
                //
                // no constraints, no regularization needed
                //
                lsfitlinearwc(y, w, fmatrix, cmatrix, n, m, k, ref info, ref tmp, lrep);
            }
            if( info<0 )
            {
                return;
            }
            
            //
            // Generate interpolant and scale it
            //
            for(i_=0; i_<=m-1;i_++)
            {
                sy[i_] = tmp[i_];
            }
            ratint.barycentricbuildfloaterhormann(sx, sy, m, d, b);
            ratint.barycentriclintransx(b, 2/(xb-xa), -((xa+xb)/(xb-xa)));
            ratint.barycentriclintransy(b, sb-sa, sa);
            
            //
            // Scale absolute errors obtained from LSFitLinearW.
            // Relative error should be calculated separately
            // (because of shifting/scaling of the task)
            //
            rep.taskrcond = lrep.taskrcond;
            rep.rmserror = lrep.rmserror*(sb-sa);
            rep.avgerror = lrep.avgerror*(sb-sa);
            rep.maxerror = lrep.maxerror*(sb-sa);
            rep.avgrelerror = 0;
            relcnt = 0;
            for(i=0; i<=n-1; i++)
            {
                if( (double)(yoriginal[i])!=(double)(0) )
                {
                    rep.avgrelerror = rep.avgrelerror+Math.Abs(ratint.barycentriccalc(b, xoriginal[i])-yoriginal[i])/Math.Abs(yoriginal[i]);
                    relcnt = relcnt+1;
                }
            }
            if( relcnt!=0 )
            {
                rep.avgrelerror = rep.avgrelerror/relcnt;
            }
        }
Example #3
0
        /*************************************************************************
        Rational least squares fitting using  Floater-Hormann  rational  functions
        with optimal D chosen from [0,9].

        Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
        functions. Different values of D are tried, optimal  D  (least  root  mean
        square error) is chosen.  Task  is  linear, so linear least squares solver
        is used. Complexity  of  this  computational  scheme is  O(N*M^2)  (mostly
        dominated by the least squares solver).

        INPUT PARAMETERS:
            X   -   points, array[0..N-1].
            Y   -   function values, array[0..N-1].
            N   -   number of points, N>0.
            M   -   number of basis functions ( = number_of_nodes), M>=2.

        OUTPUT PARAMETERS:
            Info-   same format as in LSFitLinearWC() subroutine.
                    * Info>0    task is solved
                    * Info<=0   an error occured:
                                -4 means inconvergence of internal SVD
                                -3 means inconsistent constraints
            B   -   barycentric interpolant.
            Rep -   report, same format as in LSFitLinearWC() subroutine.
                    Following fields are set:
                    * DBest         best value of the D parameter
                    * RMSError      rms error on the (X,Y).
                    * AvgError      average error on the (X,Y).
                    * AvgRelError   average relative error on the non-zero Y
                    * MaxError      maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

          -- ALGLIB PROJECT --
             Copyright 18.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricfitfloaterhormann(double[] x,
            double[] y,
            int n,
            int m,
            ref int info,
            ratint.barycentricinterpolant b,
            barycentricfitreport rep)
        {
            double[] w = new double[0];
            double[] xc = new double[0];
            double[] yc = new double[0];
            int[] dc = new int[0];
            int i = 0;

            info = 0;

            alglib.ap.assert(n>0, "BarycentricFitFloaterHormann: N<=0!");
            alglib.ap.assert(m>0, "BarycentricFitFloaterHormann: M<=0!");
            alglib.ap.assert(alglib.ap.len(x)>=n, "BarycentricFitFloaterHormann: Length(X)<N!");
            alglib.ap.assert(alglib.ap.len(y)>=n, "BarycentricFitFloaterHormann: Length(Y)<N!");
            alglib.ap.assert(apserv.isfinitevector(x, n), "BarycentricFitFloaterHormann: X contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(y, n), "BarycentricFitFloaterHormann: Y contains infinite or NaN values!");
            w = new double[n];
            for(i=0; i<=n-1; i++)
            {
                w[i] = 1;
            }
            barycentricfitfloaterhormannwc(x, y, w, n, xc, yc, dc, 0, m, ref info, b, rep);
        }
Example #4
0
        /*************************************************************************
        Weghted rational least  squares  fitting  using  Floater-Hormann  rational
        functions  with  optimal  D  chosen  from  [0,9],  with  constraints   and
        individual weights.

        Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
        functions. Different values of D are tried, optimal D (least WEIGHTED root
        mean square error) is chosen.  Task  is  linear,  so  linear least squares
        solver  is  used.  Complexity  of  this  computational  scheme is O(N*M^2)
        (mostly dominated by the least squares solver).

        SEE ALSO
        * BarycentricFitFloaterHormann(), "lightweight" fitting without invididual
          weights and constraints.

        INPUT PARAMETERS:
            X   -   points, array[0..N-1].
            Y   -   function values, array[0..N-1].
            W   -   weights, array[0..N-1]
                    Each summand in square  sum  of  approximation deviations from
                    given  values  is  multiplied  by  the square of corresponding
                    weight. Fill it by 1's if you don't  want  to  solve  weighted
                    task.
            N   -   number of points, N>0.
            XC  -   points where function values/derivatives are constrained,
                    array[0..K-1].
            YC  -   values of constraints, array[0..K-1]
            DC  -   array[0..K-1], types of constraints:
                    * DC[i]=0   means that S(XC[i])=YC[i]
                    * DC[i]=1   means that S'(XC[i])=YC[i]
                    SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
            K   -   number of constraints, 0<=K<M.
                    K=0 means no constraints (XC/YC/DC are not used in such cases)
            M   -   number of basis functions ( = number_of_nodes), M>=2.

        OUTPUT PARAMETERS:
            Info-   same format as in LSFitLinearWC() subroutine.
                    * Info>0    task is solved
                    * Info<=0   an error occured:
                                -4 means inconvergence of internal SVD
                                -3 means inconsistent constraints
                                -1 means another errors in parameters passed
                                   (N<=0, for example)
            B   -   barycentric interpolant.
            Rep -   report, same format as in LSFitLinearWC() subroutine.
                    Following fields are set:
                    * DBest         best value of the D parameter
                    * RMSError      rms error on the (X,Y).
                    * AvgError      average error on the (X,Y).
                    * AvgRelError   average relative error on the non-zero Y
                    * MaxError      maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

        IMPORTANT:
            this subroutine doesn't calculate task's condition number for K<>0.

        SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

        Setting constraints can lead  to undesired  results,  like ill-conditioned
        behavior, or inconsistency being detected. From the other side,  it allows
        us to improve quality of the fit. Here we summarize  our  experience  with
        constrained barycentric interpolants:
        * excessive  constraints  can  be  inconsistent.   Floater-Hormann   basis
          functions aren't as flexible as splines (although they are very smooth).
        * the more evenly constraints are spread across [min(x),max(x)],  the more
          chances that they will be consistent
        * the  greater  is  M (given  fixed  constraints),  the  more chances that
          constraints will be consistent
        * in the general case, consistency of constraints IS NOT GUARANTEED.
        * in the several special cases, however, we CAN guarantee consistency.
        * one of this cases is constraints on the function  VALUES at the interval
          boundaries. Note that consustency of the  constraints  on  the  function
          DERIVATIVES is NOT guaranteed (you can use in such cases  cubic  splines
          which are more flexible).
        * another  special  case  is ONE constraint on the function value (OR, but
          not AND, derivative) anywhere in the interval

        Our final recommendation is to use constraints  WHEN  AND  ONLY  WHEN  you
        can't solve your task without them. Anything beyond  special  cases  given
        above is not guaranteed and may result in inconsistency.

          -- ALGLIB PROJECT --
             Copyright 18.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricfitfloaterhormannwc(double[] x,
            double[] y,
            double[] w,
            int n,
            double[] xc,
            double[] yc,
            int[] dc,
            int k,
            int m,
            ref int info,
            ratint.barycentricinterpolant b,
            barycentricfitreport rep)
        {
            int d = 0;
            int i = 0;
            double wrmscur = 0;
            double wrmsbest = 0;
            ratint.barycentricinterpolant locb = new ratint.barycentricinterpolant();
            barycentricfitreport locrep = new barycentricfitreport();
            int locinfo = 0;

            info = 0;

            alglib.ap.assert(n>0, "BarycentricFitFloaterHormannWC: N<=0!");
            alglib.ap.assert(m>0, "BarycentricFitFloaterHormannWC: M<=0!");
            alglib.ap.assert(k>=0, "BarycentricFitFloaterHormannWC: K<0!");
            alglib.ap.assert(k<m, "BarycentricFitFloaterHormannWC: K>=M!");
            alglib.ap.assert(alglib.ap.len(x)>=n, "BarycentricFitFloaterHormannWC: Length(X)<N!");
            alglib.ap.assert(alglib.ap.len(y)>=n, "BarycentricFitFloaterHormannWC: Length(Y)<N!");
            alglib.ap.assert(alglib.ap.len(w)>=n, "BarycentricFitFloaterHormannWC: Length(W)<N!");
            alglib.ap.assert(alglib.ap.len(xc)>=k, "BarycentricFitFloaterHormannWC: Length(XC)<K!");
            alglib.ap.assert(alglib.ap.len(yc)>=k, "BarycentricFitFloaterHormannWC: Length(YC)<K!");
            alglib.ap.assert(alglib.ap.len(dc)>=k, "BarycentricFitFloaterHormannWC: Length(DC)<K!");
            alglib.ap.assert(apserv.isfinitevector(x, n), "BarycentricFitFloaterHormannWC: X contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(y, n), "BarycentricFitFloaterHormannWC: Y contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(w, n), "BarycentricFitFloaterHormannWC: X contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(xc, k), "BarycentricFitFloaterHormannWC: XC contains infinite or NaN values!");
            alglib.ap.assert(apserv.isfinitevector(yc, k), "BarycentricFitFloaterHormannWC: YC contains infinite or NaN values!");
            for(i=0; i<=k-1; i++)
            {
                alglib.ap.assert(dc[i]==0 || dc[i]==1, "BarycentricFitFloaterHormannWC: one of DC[] is not 0 or 1!");
            }
            
            //
            // Find optimal D
            //
            // Info is -3 by default (degenerate constraints).
            // If LocInfo will always be equal to -3, Info will remain equal to -3.
            // If at least once LocInfo will be -4, Info will be -4.
            //
            wrmsbest = math.maxrealnumber;
            rep.dbest = -1;
            info = -3;
            for(d=0; d<=Math.Min(9, n-1); d++)
            {
                barycentricfitwcfixedd(x, y, w, n, xc, yc, dc, k, m, d, ref locinfo, locb, locrep);
                alglib.ap.assert((locinfo==-4 || locinfo==-3) || locinfo>0, "BarycentricFitFloaterHormannWC: unexpected result from BarycentricFitWCFixedD!");
                if( locinfo>0 )
                {
                    
                    //
                    // Calculate weghted RMS
                    //
                    wrmscur = 0;
                    for(i=0; i<=n-1; i++)
                    {
                        wrmscur = wrmscur+math.sqr(w[i]*(y[i]-ratint.barycentriccalc(locb, x[i])));
                    }
                    wrmscur = Math.Sqrt(wrmscur/n);
                    if( (double)(wrmscur)<(double)(wrmsbest) || rep.dbest<0 )
                    {
                        ratint.barycentriccopy(locb, b);
                        rep.dbest = d;
                        info = 1;
                        rep.rmserror = locrep.rmserror;
                        rep.avgerror = locrep.avgerror;
                        rep.avgrelerror = locrep.avgrelerror;
                        rep.maxerror = locrep.maxerror;
                        rep.taskrcond = locrep.taskrcond;
                        wrmsbest = wrmscur;
                    }
                }
                else
                {
                    if( locinfo!=-3 && info<0 )
                    {
                        info = locinfo;
                    }
                }
            }
        }
Example #5
0
 public override alglib.apobject make_copy()
 {
     barycentricfitreport _result = new barycentricfitreport();
     _result.taskrcond = taskrcond;
     _result.dbest = dbest;
     _result.rmserror = rmserror;
     _result.avgerror = avgerror;
     _result.avgrelerror = avgrelerror;
     _result.maxerror = maxerror;
     return _result;
 }
 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_barycentricfitfloaterhormann(double[] x,
     double[] y,
     int n,
     int m,
     ref int info,
     ratint.barycentricinterpolant b,
     barycentricfitreport rep)
 {
     barycentricfitfloaterhormann(x,y,n,m,ref info,b,rep);
 }
 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_barycentricfitfloaterhormannwc(double[] x,
     double[] y,
     double[] w,
     int n,
     double[] xc,
     double[] yc,
     int[] dc,
     int k,
     int m,
     ref int info,
     ratint.barycentricinterpolant b,
     barycentricfitreport rep)
 {
     barycentricfitfloaterhormannwc(x,y,w,n,xc,yc,dc,k,m,ref info,b,rep);
 }
Example #8
0
    /*************************************************************************
    Rational least squares fitting using  Floater-Hormann  rational  functions
    with optimal D chosen from [0,9].

    Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
    functions. Different values of D are tried, optimal  D  (least  root  mean
    square error) is chosen.  Task  is  linear, so linear least squares solver
    is used. Complexity  of  this  computational  scheme is  O(N*M^2)  (mostly
    dominated by the least squares solver).

    INPUT PARAMETERS:
        X   -   points, array[0..N-1].
        Y   -   function values, array[0..N-1].
        N   -   number of points, N>0.
        M   -   number of basis functions ( = number_of_nodes), M>=2.

    OUTPUT PARAMETERS:
        Info-   same format as in LSFitLinearWC() subroutine.
                * Info>0    task is solved
                * Info<=0   an error occured:
                            -4 means inconvergence of internal SVD
                            -3 means inconsistent constraints
        B   -   barycentric interpolant.
        Rep -   report, same format as in LSFitLinearWC() subroutine.
                Following fields are set:
                * DBest         best value of the D parameter
                * RMSError      rms error on the (X,Y).
                * AvgError      average error on the (X,Y).
                * AvgRelError   average relative error on the non-zero Y
                * MaxError      maximum error
                                NON-WEIGHTED ERRORS ARE CALCULATED

      -- ALGLIB PROJECT --
         Copyright 18.08.2009 by Bochkanov Sergey
    *************************************************************************/
    public static void barycentricfitfloaterhormann(double[] x, double[] y, int n, int m, out int info, out barycentricinterpolant b, out barycentricfitreport rep)
    {
        info = 0;
        b = new barycentricinterpolant();
        rep = new barycentricfitreport();
        lsfit.barycentricfitfloaterhormann(x, y, n, m, ref info, b.innerobj, rep.innerobj);
        return;
    }
Example #9
0
    /*************************************************************************
    Weghted rational least  squares  fitting  using  Floater-Hormann  rational
    functions  with  optimal  D  chosen  from  [0,9],  with  constraints   and
    individual weights.

    Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
    functions. Different values of D are tried, optimal D (least WEIGHTED root
    mean square error) is chosen.  Task  is  linear,  so  linear least squares
    solver  is  used.  Complexity  of  this  computational  scheme is O(N*M^2)
    (mostly dominated by the least squares solver).

    SEE ALSO
    * BarycentricFitFloaterHormann(), "lightweight" fitting without invididual
      weights and constraints.

    INPUT PARAMETERS:
        X   -   points, array[0..N-1].
        Y   -   function values, array[0..N-1].
        W   -   weights, array[0..N-1]
                Each summand in square  sum  of  approximation deviations from
                given  values  is  multiplied  by  the square of corresponding
                weight. Fill it by 1's if you don't  want  to  solve  weighted
                task.
        N   -   number of points, N>0.
        XC  -   points where function values/derivatives are constrained,
                array[0..K-1].
        YC  -   values of constraints, array[0..K-1]
        DC  -   array[0..K-1], types of constraints:
                * DC[i]=0   means that S(XC[i])=YC[i]
                * DC[i]=1   means that S'(XC[i])=YC[i]
                SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
        K   -   number of constraints, 0<=K<M.
                K=0 means no constraints (XC/YC/DC are not used in such cases)
        M   -   number of basis functions ( = number_of_nodes), M>=2.

    OUTPUT PARAMETERS:
        Info-   same format as in LSFitLinearWC() subroutine.
                * Info>0    task is solved
                * Info<=0   an error occured:
                            -4 means inconvergence of internal SVD
                            -3 means inconsistent constraints
                            -1 means another errors in parameters passed
                               (N<=0, for example)
        B   -   barycentric interpolant.
        Rep -   report, same format as in LSFitLinearWC() subroutine.
                Following fields are set:
                * DBest         best value of the D parameter
                * RMSError      rms error on the (X,Y).
                * AvgError      average error on the (X,Y).
                * AvgRelError   average relative error on the non-zero Y
                * MaxError      maximum error
                                NON-WEIGHTED ERRORS ARE CALCULATED

    IMPORTANT:
        this subroutine doesn't calculate task's condition number for K<>0.

    SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

    Setting constraints can lead  to undesired  results,  like ill-conditioned
    behavior, or inconsistency being detected. From the other side,  it allows
    us to improve quality of the fit. Here we summarize  our  experience  with
    constrained barycentric interpolants:
    * excessive  constraints  can  be  inconsistent.   Floater-Hormann   basis
      functions aren't as flexible as splines (although they are very smooth).
    * the more evenly constraints are spread across [min(x),max(x)],  the more
      chances that they will be consistent
    * the  greater  is  M (given  fixed  constraints),  the  more chances that
      constraints will be consistent
    * in the general case, consistency of constraints IS NOT GUARANTEED.
    * in the several special cases, however, we CAN guarantee consistency.
    * one of this cases is constraints on the function  VALUES at the interval
      boundaries. Note that consustency of the  constraints  on  the  function
      DERIVATIVES is NOT guaranteed (you can use in such cases  cubic  splines
      which are more flexible).
    * another  special  case  is ONE constraint on the function value (OR, but
      not AND, derivative) anywhere in the interval

    Our final recommendation is to use constraints  WHEN  AND  ONLY  WHEN  you
    can't solve your task without them. Anything beyond  special  cases  given
    above is not guaranteed and may result in inconsistency.

      -- ALGLIB PROJECT --
         Copyright 18.08.2009 by Bochkanov Sergey
    *************************************************************************/
    public static void barycentricfitfloaterhormannwc(double[] x, double[] y, double[] w, int n, double[] xc, double[] yc, int[] dc, int k, int m, out int info, out barycentricinterpolant b, out barycentricfitreport rep)
    {
        info = 0;
        b = new barycentricinterpolant();
        rep = new barycentricfitreport();
        lsfit.barycentricfitfloaterhormannwc(x, y, w, n, xc, yc, dc, k, m, ref info, b.innerobj, rep.innerobj);
        return;
    }
Example #10
0
        /*************************************************************************
        *  Weghted rational least  squares  fitting  using  Floater-Hormann  rational
        *  functions  with  optimal  D  chosen  from  [0,9],  with  constraints   and
        *  individual weights.
        *
        *  Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
        *  functions. Different values of D are tried, optimal D (least WEIGHTED root
        *  mean square error) is chosen.  Task  is  linear,  so  linear least squares
        *  solver  is  used.  Complexity  of  this  computational  scheme is O(N*M^2)
        *  (mostly dominated by the least squares solver).
        *
        *  SEE ALSO
        * BarycentricFitFloaterHormann(), "lightweight" fitting without invididual
        *  weights and constraints.
        *
        *  INPUT PARAMETERS:
        *   X   -   points, array[0..N-1].
        *   Y   -   function values, array[0..N-1].
        *   W   -   weights, array[0..N-1]
        *           Each summand in square  sum  of  approximation deviations from
        *           given  values  is  multiplied  by  the square of corresponding
        *           weight. Fill it by 1's if you don't  want  to  solve  weighted
        *           task.
        *   N   -   number of points, N>0.
        *   XC  -   points where function values/derivatives are constrained,
        *           array[0..K-1].
        *   YC  -   values of constraints, array[0..K-1]
        *   DC  -   array[0..K-1], types of constraints:
        * DC[i]=0   means that S(XC[i])=YC[i]
        * DC[i]=1   means that S'(XC[i])=YC[i]
        *           SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
        *   K   -   number of constraints, 0<=K<M.
        *           K=0 means no constraints (XC/YC/DC are not used in such cases)
        *   M   -   number of basis functions ( = number_of_nodes), M>=2.
        *
        *  OUTPUT PARAMETERS:
        *   Info-   same format as in LSFitLinearWC() subroutine.
        * Info>0    task is solved
        * Info<=0   an error occured:
        *                       -4 means inconvergence of internal SVD
        *                       -3 means inconsistent constraints
        *                       -1 means another errors in parameters passed
        *                          (N<=0, for example)
        *   B   -   barycentric interpolant.
        *   Rep -   report, same format as in LSFitLinearWC() subroutine.
        *           Following fields are set:
        * DBest         best value of the D parameter
        * RMSError      rms error on the (X,Y).
        * AvgError      average error on the (X,Y).
        * AvgRelError   average relative error on the non-zero Y
        * MaxError      maximum error
        *                           NON-WEIGHTED ERRORS ARE CALCULATED
        *
        *  IMPORTANT:
        *   this subroitine doesn't calculate task's condition number for K<>0.
        *
        *  SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:
        *
        *  Setting constraints can lead  to undesired  results,  like ill-conditioned
        *  behavior, or inconsistency being detected. From the other side,  it allows
        *  us to improve quality of the fit. Here we summarize  our  experience  with
        *  constrained barycentric interpolants:
        * excessive  constraints  can  be  inconsistent.   Floater-Hormann   basis
        *  functions aren't as flexible as splines (although they are very smooth).
        * the more evenly constraints are spread across [min(x),max(x)],  the more
        *  chances that they will be consistent
        * the  greater  is  M (given  fixed  constraints),  the  more chances that
        *  constraints will be consistent
        * in the general case, consistency of constraints IS NOT GUARANTEED.
        * in the several special cases, however, we CAN guarantee consistency.
        * one of this cases is constraints on the function  VALUES at the interval
        *  boundaries. Note that consustency of the  constraints  on  the  function
        *  DERIVATIVES is NOT guaranteed (you can use in such cases  cubic  splines
        *  which are more flexible).
        * another  special  case  is ONE constraint on the function value (OR, but
        *  not AND, derivative) anywhere in the interval
        *
        *  Our final recommendation is to use constraints  WHEN  AND  ONLY  WHEN  you
        *  can't solve your task without them. Anything beyond  special  cases  given
        *  above is not guaranteed and may result in inconsistency.
        *
        *  -- ALGLIB PROJECT --
        *    Copyright 18.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricfitfloaterhormannwc(ref double[] x,
                                                          ref double[] y,
                                                          ref double[] w,
                                                          int n,
                                                          ref double[] xc,
                                                          ref double[] yc,
                                                          ref int[] dc,
                                                          int k,
                                                          int m,
                                                          ref int info,
                                                          ref barycentricinterpolant b,
                                                          ref barycentricfitreport rep)
        {
            int    d                      = 0;
            int    i                      = 0;
            double wrmscur                = 0;
            double wrmsbest               = 0;
            barycentricinterpolant locb   = new barycentricinterpolant();
            barycentricfitreport   locrep = new barycentricfitreport();
            int locinfo                   = 0;

            if (n < 1 | m < 2 | k < 0 | k >= m)
            {
                info = -1;
                return;
            }

            //
            // Find optimal D
            //
            // Info is -3 by default (degenerate constraints).
            // If LocInfo will always be equal to -3, Info will remain equal to -3.
            // If at least once LocInfo will be -4, Info will be -4.
            //
            wrmsbest  = AP.Math.MaxRealNumber;
            rep.dbest = -1;
            info      = -3;
            for (d = 0; d <= Math.Min(9, n - 1); d++)
            {
                barycentricfitwcfixedd(x, y, ref w, n, xc, yc, ref dc, k, m, d, ref locinfo, ref locb, ref locrep);
                System.Diagnostics.Debug.Assert(locinfo == -4 | locinfo == -3 | locinfo > 0, "BarycentricFitFloaterHormannWC: unexpected result from BarycentricFitWCFixedD!");
                if (locinfo > 0)
                {
                    //
                    // Calculate weghted RMS
                    //
                    wrmscur = 0;
                    for (i = 0; i <= n - 1; i++)
                    {
                        wrmscur = wrmscur + AP.Math.Sqr(w[i] * (y[i] - barycentriccalc(ref locb, x[i])));
                    }
                    wrmscur = Math.Sqrt(wrmscur / n);
                    if ((double)(wrmscur) < (double)(wrmsbest) | rep.dbest < 0)
                    {
                        barycentriccopy(ref locb, ref b);
                        rep.dbest       = d;
                        info            = 1;
                        rep.rmserror    = locrep.rmserror;
                        rep.avgerror    = locrep.avgerror;
                        rep.avgrelerror = locrep.avgrelerror;
                        rep.maxerror    = locrep.maxerror;
                        rep.taskrcond   = locrep.taskrcond;
                        wrmsbest        = wrmscur;
                    }
                }
                else
                {
                    if (locinfo != -3 & info < 0)
                    {
                        info = locinfo;
                    }
                }
            }
        }
Example #11
0
        /*************************************************************************
        *  Internal Floater-Hormann fitting subroutine for fixed D
        *************************************************************************/
        private static void barycentricfitwcfixedd(double[] x,
                                                   double[] y,
                                                   ref double[] w,
                                                   int n,
                                                   double[] xc,
                                                   double[] yc,
                                                   ref int[] dc,
                                                   int k,
                                                   int m,
                                                   int d,
                                                   ref int info,
                                                   ref barycentricinterpolant b,
                                                   ref barycentricfitreport rep)
        {
            double[,] fmatrix = new double[0, 0];
            double[,] cmatrix = new double[0, 0];
            double[]               y2        = new double[0];
            double[]               w2        = new double[0];
            double[]               sx        = new double[0];
            double[]               sy        = new double[0];
            double[]               sbf       = new double[0];
            double[]               xoriginal = new double[0];
            double[]               yoriginal = new double[0];
            double[]               tmp       = new double[0];
            lsfit.lsfitreport      lrep      = new lsfit.lsfitreport();
            double                 v0        = 0;
            double                 v1        = 0;
            double                 mx        = 0;
            barycentricinterpolant b2        = new barycentricinterpolant();
            int    i      = 0;
            int    j      = 0;
            int    relcnt = 0;
            double xa     = 0;
            double xb     = 0;
            double sa     = 0;
            double sb     = 0;
            double decay  = 0;
            int    i_     = 0;

            x  = (double[])x.Clone();
            y  = (double[])y.Clone();
            xc = (double[])xc.Clone();
            yc = (double[])yc.Clone();

            if (n < 1 | m < 2 | k < 0 | k >= m)
            {
                info = -1;
                return;
            }
            for (i = 0; i <= k - 1; i++)
            {
                info = 0;
                if (dc[i] < 0)
                {
                    info = -1;
                }
                if (dc[i] > 1)
                {
                    info = -1;
                }
                if (info < 0)
                {
                    return;
                }
            }

            //
            // weight decay for correct handling of task which becomes
            // degenerate after constraints are applied
            //
            decay = 10000 * AP.Math.MachineEpsilon;

            //
            // Scale X, Y, XC, YC
            //
            lsfit.lsfitscalexy(ref x, ref y, n, ref xc, ref yc, ref dc, k, ref xa, ref xb, ref sa, ref sb, ref xoriginal, ref yoriginal);

            //
            // allocate space, initialize:
            // * FMatrix-   values of basis functions at X[]
            // * CMatrix-   values (derivatives) of basis functions at XC[]
            //
            y2      = new double[n + m];
            w2      = new double[n + m];
            fmatrix = new double[n + m, m];
            if (k > 0)
            {
                cmatrix = new double[k, m + 1];
            }
            y2 = new double[n + m];
            w2 = new double[n + m];

            //
            // Prepare design and constraints matrices:
            // * fill constraints matrix
            // * fill first N rows of design matrix with values
            // * fill next M rows of design matrix with regularizing term
            // * append M zeros to Y
            // * append M elements, mean(abs(W)) each, to W
            //
            sx  = new double[m];
            sy  = new double[m];
            sbf = new double[m];
            for (j = 0; j <= m - 1; j++)
            {
                sx[j] = (double)(2 * j) / ((double)(m - 1)) - 1;
            }
            for (i = 0; i <= m - 1; i++)
            {
                sy[i] = 1;
            }
            barycentricbuildfloaterhormann(ref sx, ref sy, m, d, ref b2);
            mx = 0;
            for (i = 0; i <= n - 1; i++)
            {
                barycentriccalcbasis(ref b2, x[i], ref sbf);
                for (i_ = 0; i_ <= m - 1; i_++)
                {
                    fmatrix[i, i_] = sbf[i_];
                }
                y2[i] = y[i];
                w2[i] = w[i];
                mx    = mx + Math.Abs(w[i]) / n;
            }
            for (i = 0; i <= m - 1; i++)
            {
                for (j = 0; j <= m - 1; j++)
                {
                    if (i == j)
                    {
                        fmatrix[n + i, j] = decay;
                    }
                    else
                    {
                        fmatrix[n + i, j] = 0;
                    }
                }
                y2[n + i] = 0;
                w2[n + i] = mx;
            }
            if (k > 0)
            {
                for (j = 0; j <= m - 1; j++)
                {
                    for (i = 0; i <= m - 1; i++)
                    {
                        sy[i] = 0;
                    }
                    sy[j] = 1;
                    barycentricbuildfloaterhormann(ref sx, ref sy, m, d, ref b2);
                    for (i = 0; i <= k - 1; i++)
                    {
                        System.Diagnostics.Debug.Assert(dc[i] >= 0 & dc[i] <= 1, "BarycentricFit: internal error!");
                        barycentricdiff1(ref b2, xc[i], ref v0, ref v1);
                        if (dc[i] == 0)
                        {
                            cmatrix[i, j] = v0;
                        }
                        if (dc[i] == 1)
                        {
                            cmatrix[i, j] = v1;
                        }
                    }
                }
                for (i = 0; i <= k - 1; i++)
                {
                    cmatrix[i, m] = yc[i];
                }
            }

            //
            // Solve constrained task
            //
            if (k > 0)
            {
                //
                // solve using regularization
                //
                lsfit.lsfitlinearwc(y2, ref w2, ref fmatrix, cmatrix, n + m, m, k, ref info, ref tmp, ref lrep);
            }
            else
            {
                //
                // no constraints, no regularization needed
                //
                lsfit.lsfitlinearwc(y, ref w, ref fmatrix, cmatrix, n, m, k, ref info, ref tmp, ref lrep);
            }
            if (info < 0)
            {
                return;
            }

            //
            // Generate interpolant and scale it
            //
            for (i_ = 0; i_ <= m - 1; i_++)
            {
                sy[i_] = tmp[i_];
            }
            barycentricbuildfloaterhormann(ref sx, ref sy, m, d, ref b);
            barycentriclintransx(ref b, 2 / (xb - xa), -((xa + xb) / (xb - xa)));
            barycentriclintransy(ref b, sb - sa, sa);

            //
            // Scale absolute errors obtained from LSFitLinearW.
            // Relative error should be calculated separately
            // (because of shifting/scaling of the task)
            //
            rep.taskrcond   = lrep.taskrcond;
            rep.rmserror    = lrep.rmserror * (sb - sa);
            rep.avgerror    = lrep.avgerror * (sb - sa);
            rep.maxerror    = lrep.maxerror * (sb - sa);
            rep.avgrelerror = 0;
            relcnt          = 0;
            for (i = 0; i <= n - 1; i++)
            {
                if ((double)(yoriginal[i]) != (double)(0))
                {
                    rep.avgrelerror = rep.avgrelerror + Math.Abs(barycentriccalc(ref b, xoriginal[i]) - yoriginal[i]) / Math.Abs(yoriginal[i]);
                    relcnt          = relcnt + 1;
                }
            }
            if (relcnt != 0)
            {
                rep.avgrelerror = rep.avgrelerror / relcnt;
            }
        }
Example #12
0
        /*************************************************************************
        Weghted rational least  squares  fitting  using  Floater-Hormann  rational
        functions  with  optimal  D  chosen  from  [0,9],  with  constraints   and
        individual weights.

        Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
        functions. Different values of D are tried, optimal D (least WEIGHTED root
        mean square error) is chosen.  Task  is  linear,  so  linear least squares
        solver  is  used.  Complexity  of  this  computational  scheme is O(N*M^2)
        (mostly dominated by the least squares solver).

        SEE ALSO
        * BarycentricFitFloaterHormann(), "lightweight" fitting without invididual
          weights and constraints.

        INPUT PARAMETERS:
            X   -   points, array[0..N-1].
            Y   -   function values, array[0..N-1].
            W   -   weights, array[0..N-1]
                    Each summand in square  sum  of  approximation deviations from
                    given  values  is  multiplied  by  the square of corresponding
                    weight. Fill it by 1's if you don't  want  to  solve  weighted
                    task.
            N   -   number of points, N>0.
            XC  -   points where function values/derivatives are constrained,
                    array[0..K-1].
            YC  -   values of constraints, array[0..K-1]
            DC  -   array[0..K-1], types of constraints:
                    * DC[i]=0   means that S(XC[i])=YC[i]
                    * DC[i]=1   means that S'(XC[i])=YC[i]
                    SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
            K   -   number of constraints, 0<=K<M.
                    K=0 means no constraints (XC/YC/DC are not used in such cases)
            M   -   number of basis functions ( = number_of_nodes), M>=2.

        OUTPUT PARAMETERS:
            Info-   same format as in LSFitLinearWC() subroutine.
                    * Info>0    task is solved
                    * Info<=0   an error occured:
                                -4 means inconvergence of internal SVD
                                -3 means inconsistent constraints
                                -1 means another errors in parameters passed
                                   (N<=0, for example)
            B   -   barycentric interpolant.
            Rep -   report, same format as in LSFitLinearWC() subroutine.
                    Following fields are set:
                    * DBest         best value of the D parameter
                    * RMSError      rms error on the (X,Y).
                    * AvgError      average error on the (X,Y).
                    * AvgRelError   average relative error on the non-zero Y
                    * MaxError      maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

        IMPORTANT:
            this subroitine doesn't calculate task's condition number for K<>0.

        SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

        Setting constraints can lead  to undesired  results,  like ill-conditioned
        behavior, or inconsistency being detected. From the other side,  it allows
        us to improve quality of the fit. Here we summarize  our  experience  with
        constrained barycentric interpolants:
        * excessive  constraints  can  be  inconsistent.   Floater-Hormann   basis
          functions aren't as flexible as splines (although they are very smooth).
        * the more evenly constraints are spread across [min(x),max(x)],  the more
          chances that they will be consistent
        * the  greater  is  M (given  fixed  constraints),  the  more chances that
          constraints will be consistent
        * in the general case, consistency of constraints IS NOT GUARANTEED.
        * in the several special cases, however, we CAN guarantee consistency.
        * one of this cases is constraints on the function  VALUES at the interval
          boundaries. Note that consustency of the  constraints  on  the  function
          DERIVATIVES is NOT guaranteed (you can use in such cases  cubic  splines
          which are more flexible).
        * another  special  case  is ONE constraint on the function value (OR, but
          not AND, derivative) anywhere in the interval

        Our final recommendation is to use constraints  WHEN  AND  ONLY  WHEN  you
        can't solve your task without them. Anything beyond  special  cases  given
        above is not guaranteed and may result in inconsistency.

          -- ALGLIB PROJECT --
             Copyright 18.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricfitfloaterhormannwc(ref double[] x,
            ref double[] y,
            ref double[] w,
            int n,
            ref double[] xc,
            ref double[] yc,
            ref int[] dc,
            int k,
            int m,
            ref int info,
            ref barycentricinterpolant b,
            ref barycentricfitreport rep)
        {
            int d = 0;
            int i = 0;
            double wrmscur = 0;
            double wrmsbest = 0;
            barycentricinterpolant locb = new barycentricinterpolant();
            barycentricfitreport locrep = new barycentricfitreport();
            int locinfo = 0;

            if( n<1 | m<2 | k<0 | k>=m )
            {
                info = -1;
                return;
            }
            
            //
            // Find optimal D
            //
            // Info is -3 by default (degenerate constraints).
            // If LocInfo will always be equal to -3, Info will remain equal to -3.
            // If at least once LocInfo will be -4, Info will be -4.
            //
            wrmsbest = AP.Math.MaxRealNumber;
            rep.dbest = -1;
            info = -3;
            for(d=0; d<=Math.Min(9, n-1); d++)
            {
                barycentricfitwcfixedd(x, y, ref w, n, xc, yc, ref dc, k, m, d, ref locinfo, ref locb, ref locrep);
                System.Diagnostics.Debug.Assert(locinfo==-4 | locinfo==-3 | locinfo>0, "BarycentricFitFloaterHormannWC: unexpected result from BarycentricFitWCFixedD!");
                if( locinfo>0 )
                {
                    
                    //
                    // Calculate weghted RMS
                    //
                    wrmscur = 0;
                    for(i=0; i<=n-1; i++)
                    {
                        wrmscur = wrmscur+AP.Math.Sqr(w[i]*(y[i]-barycentriccalc(ref locb, x[i])));
                    }
                    wrmscur = Math.Sqrt(wrmscur/n);
                    if( (double)(wrmscur)<(double)(wrmsbest) | rep.dbest<0 )
                    {
                        barycentriccopy(ref locb, ref b);
                        rep.dbest = d;
                        info = 1;
                        rep.rmserror = locrep.rmserror;
                        rep.avgerror = locrep.avgerror;
                        rep.avgrelerror = locrep.avgrelerror;
                        rep.maxerror = locrep.maxerror;
                        rep.taskrcond = locrep.taskrcond;
                        wrmsbest = wrmscur;
                    }
                }
                else
                {
                    if( locinfo!=-3 & info<0 )
                    {
                        info = locinfo;
                    }
                }
            }
        }
Example #13
0
        /*************************************************************************
        Rational least squares fitting, without weights and constraints.

        See BarycentricFitFloaterHormannWC() for more information.

          -- ALGLIB PROJECT --
             Copyright 18.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricfitfloaterhormann(ref double[] x,
            ref double[] y,
            int n,
            int m,
            ref int info,
            ref barycentricinterpolant b,
            ref barycentricfitreport rep)
        {
            double[] w = new double[0];
            double[] xc = new double[0];
            double[] yc = new double[0];
            int[] dc = new int[0];
            int i = 0;

            if( n<1 )
            {
                info = -1;
                return;
            }
            w = new double[n];
            for(i=0; i<=n-1; i++)
            {
                w[i] = 1;
            }
            barycentricfitfloaterhormannwc(ref x, ref y, ref w, n, ref xc, ref yc, ref dc, 0, m, ref info, ref b, ref rep);
        }