// Update is called once per frame void Update() { //displayText2.text="Filtering is : " + filter +" labels are : ";//+ts.GetNbOfLabels() + "\t label is :" + ts.GetLabels().Length; displayText.text = " Labesl are : " + ts.GetNbOfLabels() + "\t labels are \t " + labelstoString(ts) + "\t" + "\t Likeliest is " + hhmm.GetLikeliest() + " filter is " + filter; // ts.GetLabels().Length; //displayText2.text = " Likelihood is: " + gyroDelta[0] + "\t"+ gyroDelta[1] +"\t" + gyroDelta[2] ; //+"\t"+ hhmm.GetLikelihoods()[0] + "\t"+ hhmm.GetLikelihoods()[1] + "\t" + hhmm.GetLikeliest(); displayText.text = ""; displayText2.text = ""; if (hhmm.GetTimeProgressions()[1] > 0.95f && hhmm.GetTimeProgressions()[1] < 1.05f) { //filter = false; goLevelDesign.GetComponent <LevelDesignWords>().letter = ts.GetLabels()[1]; //displayText3.text = "after clear()" + hhmm.GetTimeProgressions()[1] ; } else { displayText3.text = " "; //filter = true; } if (filter) { gyroDistanceThreshold = thresholds[dataStreamer.modeValue]; //threshold as a function of the recording mode gyroCoords[0] = dataStreamer.data[0]; gyroCoords[1] = dataStreamer.data[1]; gyroCoords[2] = dataStreamer.data[2]; if (distance(gyroCoords, prevGyroCoords) > gyroDistanceThreshold) { //not over the threshold displayText2.text = " Likelihood is: " + "\t" + likelihoodsString(ts); //+ distance(gyroCoords, prevGyroCoords) + "\t" + gyroCoords[0]+ "\t"+ prevGyroCoords[0] + "\t" + gyroDistanceThreshold; /*+ hhmm.GetTimeProgressions()[0] + "\t" + hhmm.GetTimeProgressions()[1] */ hhmm.Filter(gyroDelta); likeliest = hhmm.GetLikeliest(); likelihoods = hhmm.GetLikelihoods(); prevGyroCoords[0] = gyroCoords[0]; //dataStreamer.data[0]; prevGyroCoords[1] = gyroCoords[1]; //dataStreamer.data[1]; prevGyroCoords[2] = gyroCoords[2]; //dataStreamer.data[2]; } else //filter if there s a motion { displayText3.text = "Please move ! "; } } else { displayText3.text = " "; //displayText3.text = " Not Filtering ! "; //goLevelDesign.GetComponent<LevelDesignWords>().letter = "" ; } }
private string labelstoString(XmmTrainingSet ts) { string s = ""; for (int i = 0; i < ts.GetLabels().Length; i++) { s += ts.GetLabels()[i] + "\t"; } return(s); }
private void logLabels() { string[] labels = ts.GetLabels(); Debug.Log("nb of labels : " + labels.Length); for (int i = 0; i < labels.Length; ++i) { Debug.Log("label " + i + " : " + labels[i]); } }
private string likelihoodsString(XmmTrainingSet ts) { string s = ""; for (int i = 0; i < ts.GetLabels().Length; i++) { s += hhmm.GetTimeProgressions()[i] + "\t"; } return(s); }