public void TestIncreaseNeuronCountHidden() { BasicNetwork network = XOR.CreateTrainedXOR(); Assert.IsTrue(XOR.VerifyXOR(network, 0.10)); PruneSelective prune = new PruneSelective(network); prune.ChangeNeuronCount(1, 5); BasicNetwork model = EncogUtility.SimpleFeedForward(2, 5, 0, 1, false); CheckWithModel(model.Structure.Flat, network.Structure.Flat); Assert.IsTrue(XOR.VerifyXOR(network, 0.10)); }
public void TestPersistEG() { IMLDataSet trainingSet = XOR.CreateXORDataSet(); RBFNetwork network = new RBFNetwork(2, 4, 1, RBFEnum.Gaussian); SVDTraining training = new SVDTraining(network, trainingSet); training.Iteration(); XOR.VerifyXOR(network, 0.1); EncogDirectoryPersistence.SaveObject(EG_FILENAME, network); RBFNetwork network2 = (RBFNetwork)EncogDirectoryPersistence.LoadObject(EG_FILENAME); XOR.VerifyXOR(network2, 0.1); }
public BasicPNN create() { PNNOutputMode mode = PNNOutputMode.Regression; BasicPNN network = new BasicPNN(PNNKernelType.Gaussian, mode, 2, 1); BasicMLDataSet trainingSet = new BasicMLDataSet(XOR.XORInput, XOR.XORIdeal); TrainBasicPNN train = new TrainBasicPNN(network, trainingSet); train.Iteration(); XOR.VerifyXOR(network, 0.001); return(network); }
public void Validate(BasicNetwork network) { network.ClearContext(); XOR.VerifyXOR(network, 0.1); }
public void Validate(FreeformNetwork network) { network.ClearContext(); XOR.VerifyXOR(network, 0.1); }