Example #1
0
        /// <summary>
        /// Predicts the output of the provided data after training has occured.
        /// </summary>
        /// <param name="outputType">The type of output data.</param>
        /// <returns></returns>
        public void Predict(EPerceptronOutputType outputType)
        {
            if (!HasTrained)
            {
                WorqnetsUtils.PrintMessage("Please Train The Network Before Attempting To Predict",
                                           WorqnetsUtils.MessageType.Error);
                return;
            }

            _bias = TrainingData.CalculatedBias;

            switch (outputType)
            {
            case EPerceptronOutputType.Integer:
                PredictedValue =
                    CalculateWeightedSum(ProblemData.Values, TrainingData.CalculatedWeights).ToString();
                break;

            case EPerceptronOutputType.String:
                PredictedValue = CalculateWeightedSum(ProblemData.Values, TrainingData.CalculatedWeights) > 0
                        ? TrainingData.OutputClass2
                        : TrainingData.OutputClass1;
                break;

            default:
                throw new ArgumentOutOfRangeException(nameof(outputType), outputType, null);
            }

            //ProblemData.FloatOutput = PredictedValue > 0 ? 1 : 0;
        }
Example #2
0
        /// <summary>
        /// Co-routine to perform the training of the perceptron. This ensures that training is done on a separate thread so as to avoid freezing the program.
        /// </summary>
        /// <returns>Returns Wait For End Of Frame. Continues at the end of the current frame.</returns>
        private IEnumerator DoTrain()
        {
            InitializeWeights();

            EpochsPerformed              = 0;
            _repeatedAfterConverging     = 0;
            LastTrainingCouldNotConverge = false;

            //Get out of training if train data is null.
            if (!TrainingData)
            {
                yield break;
            }
            CheckForTrainData();
            //Train at least once.
            do
            {
                //Set total error euals zero.
                _totalError = 0;

                //Get out of training if max number of epochs has been reached (training could not converge).
                if (EpochsPerformed == MaxEpochs - 1)
                {
                    WorqnetsUtils.PrintMessage("Could Not Converge", WorqnetsUtils.MessageType.Error);
                    LastTrainingCouldNotConverge = true;
                    HasTrained = false;
                    yield break;
                }

                for (var i = 0; i < TrainingData.TrainingDataSize; i++)
                {
                    UpdateWeights(i);

                    if (EnableTrainDebugging)
                    {
                        //Debug.Log("========================================");
                        Debug.Log("W1: " + _weights[0] + " W2: " + _weights[1] + " Bias: " + _bias);
                    }
                }

                if (EnableTrainDebugging)
                {
                    Debug.Log("Total Error: " + _totalError);
                    //Debug.Log("========================================");
                }

                if (_totalError <= Epsilon)
                {
                    _repeatedAfterConverging++;
                }
                EpochsPerformed += 1;
            } while (EpochsPerformed < MaxEpochs && _repeatedAfterConverging <= RepetitionsAfterConverging);

            TrainingData.CalculatedWeights = _weights;
            TrainingData.CalculatedBias    = _bias;

            yield return(new WaitForEndOfFrame());
        }
Example #3
0
        private float CalculateWeightedSum(IList <float> inputs, IList <float> weights)
        {
            if (inputs.Count != weights.Count)
            {
                WorqnetsUtils.PrintMessage("Can not train. Inputs and weights do not match",
                                           WorqnetsUtils.MessageType.Warning);
                return(float.MinValue);
            }

            var weightedSum = 0.0f;

            for (var i = 0; i < inputs.Count; i += 1)
            {
                weightedSum += inputs[i] * weights[i];
            }

            weightedSum += _bias;

            return(weightedSum);
        }