Example #1
0
        /// <summary>
        /// Load data from CSV.
        /// </summary>
        /// <param name="csvFilePath">CSV file path.</param>
        /// <param name="hasHeader">CSV has headers.</param>
        public virtual void LoadDataFromCsv(string csvFilePath, bool hasHeader = false)
        {
            if (initialized == false)
            {
                throw new Exception("ML Model has not been initialized yet.");
            }

            lock (mlModelCompilation)
            {
                hasHeaders = hasHeader;

                IEnumerable <string> csvLines = File.ReadAllLines(csvFilePath);

                if (hasHeader)
                {
                    csvLines = csvLines.Skip(1);
                }

                foreach (string line in csvLines)
                {
                    IList <double> dict =
                        new List <double>();

                    string[] vals = line.Replace(" ", "").Split(",");

                    for (int i = 0; i < vals.Length - 1; i++)
                    {
                        dict.Add(Convert.ToDouble(vals[i]));
                    }

                    Validity.Add(Convert.ToBoolean(vals[vals.Length - 1]));

                    Data.Add(dict.ToArray());
                }

                // Create random variable w with VectorGuassian (of size 3)
                // Features => (Gold | Nickel | Copper) Concentration, IsGoodMaterial?
                w = Variable.Random(new VectorGaussian(Vector.Zero(FeatureCount), PositiveDefiniteMatrix.Identity(FeatureCount))).Named("w");

                // Create Observable variable based on valid_ui;
                y = Variable.Observed(Validity.ToArray());

                BayesPointMachine.Run(this, y, w);
            }
        }