Example #1
0
        /**
         * \brief Load the generation
         * \details load the complete population and the best individual in two files. The path depends on GeneratePath()
         */

        public void LoadGeneration(string path, int generationIndex, float[,] floatArr, int rowIndex)
        {
            UIO.LoadFloatArray(path + generationIndex, "/population.gene", floatArr);
            Matrix <float> partialPopulation = Matrix <float> .Build.DenseOfArray(floatArr);

            population.SetSubMatrix(rowIndex, 0, partialPopulation);
        }
Example #2
0
        public void LoadGeneration(int generationIndex, float[,] floatArr)
        {
            UIO.LoadFloatArray(GeneratePath() + generationIndex, "/population.gene", floatArr);
            population = Matrix <float> .Build.DenseOfArray(floatArr);

            //population.SetSubMatrix(rowIndex, 0, Matrix<float>.Build.DenseOfArray(floatArr));
        }
Example #3
0
 public override void CloseSessionWriter()
 {
     if (save)
     {
         UIO.CloseStreamWriter(writerSession);
     }
 }
Example #4
0
        public override void Build()
        {
            if (save)
            {
                writerEnv = UIO.CreateStreamWriter(GeneratePath(task, true), "GeneSessionResults.csv", false);
                UIO.WriteLine(writerEnv, "Generation;Angle Random Rotation;Wind");
            }
            Debug.Log("Build DroneSession");
            signal  = new ControlSignal();
            tsignal = new ThrustSignal();
            tmpBuildCustomWeights = new List <Matrix <float> >();
            externalEvaluations   = Vector <float> .Build.Dense(populationSize);

            //Debug.Log(fromTask);
            taskObject = (DroneTask)Activator.CreateInstance(Type.GetType("Lexmou.MachineLearning.Drone" + task), rndGenerator, fromTask);
            //Debug.Log(taskObject.fromTask);
            dronePopulation = new GameObject[populationSize];
            droneRigid      = new Rigidbody[populationSize];
            targetPosition  = new Vector3[populationSize];
            mlpPopulation   = new MultiLayerMathsNet[populationSize];

            gene = new Genetic(seed, rndGenerator, populationSize, taskObject.individualSize, initialValueWeights, mutationRate, randomIndividualsRate, bestIndividualsRate, emptyRate, GeneratePath(task, false), save);
            if (loadGeneration != 0)
            {
                float[,] floatArr = new float[taskObject.individualSize - taskObject.rowIndex, populationSize];
                Debug.Log(taskObject.fromTask);
                //Debug.Log(taskObject.individualSize);
                gene.LoadGeneration(GeneratePath(taskObject.fromTask, true), loadGeneration, floatArr, taskObject.rowIndex);
                gene.generation = loadGeneration;
            }
        }
Example #5
0
 public override void OnDestroy()
 {
     if (save)
     {
         Debug.Log("Destroy Genetic Writer");
         UIO.CloseStreamWriter(gene.writer);
         UIO.CloseStreamWriter(writerEnv);
     }
 }
Example #6
0
        /**
         *
         */

        public Genetic(int seed, SystemRandomSource rndGenerator, int populationSize, int individualSize, float initialValueWeights, float mutationRate = 0.1f, float randomIndividualsRate = 0.05f, float bestIndividualsRate = 0.05f, float emptyRate = 0.0f, string path = "", bool save = true)
        {
            this.save = save;
            tmp       = Matrix <float> .Build.Dense(individualSize, populationSize);

            this.path                = path;
            this.bestScore           = 0.0f;
            this.generation          = 1;
            this.seed                = seed;
            this.initialValueWeights = initialValueWeights;
            if (rndGenerator != null)
            {
                this.rndGenerator = rndGenerator;
            }
            else
            {
                this.rndGenerator = new SystemRandomSource(seed);
            }

            distribution        = new ContinuousUniform(-initialValueWeights, initialValueWeights, rndGenerator);
            subDistribution     = new ContinuousUniform(-0.01, 0.01, rndGenerator);
            drawDistribution    = new ContinuousUniform(0.0f, 1.0f, rndGenerator);
            this.populationSize = populationSize;
            this.individualSize = individualSize;

            this.population = Matrix <float> .Build.Random(individualSize, populationSize, distribution);

            for (int i = 0; i < populationSize; i++)
            {
                distEmpty = Combinatorics.GenerateCombination(individualSize, Mathf.RoundToInt(emptyRate * individualSize), rndGenerator);
                for (int j = 0; j < individualSize; j++)
                {
                    if (distEmpty[j])
                    {
                        population[j, i] = 0.000f;
                    }
                }
            }

            this.evaluations = Vector <float> .Build.Dense(populationSize);

            this.sumEvaluations = 0.0f;


            this.mutationRate          = mutationRate;
            this.randomIndividualsRate = randomIndividualsRate;
            this.bestIndividualsRate   = bestIndividualsRate;
            this.emptyRate             = emptyRate;
            if (save)
            {
                writer = UIO.CreateStreamWriter(GeneratePath(), "GeneticResults.csv", false);
                UIO.WriteLine(writer, "Generation;Best;Mean;Std Deviation;Median");
            }

            indexPermutation = Combinatorics.GeneratePermutation(populationSize);
        }
Example #7
0
 public override void RunEachIntervalUpdate()
 {
     generationInfos = gene.Run(externalEvaluations, theoricBestScore, intervalSave);
     hudManager.UpdateTextLayout("Generation", generationInfos);
     theoricBestScore = 0;
     if (save)
     {
         UIO.WriteLine(writerEnv, gene.generation + ";" + taskObject.AngleRandomRotation + ";" + taskObject.WindStrength);
     }
 }
Example #8
0
 public override void SetParametersFromCommandLine()
 {
     UIO.CheckBeforeReplaceCommandLineArguments(this, "save");
     UIO.CheckBeforeReplaceCommandLineArguments(this, "task");
     UIO.CheckBeforeReplaceCommandLineArguments(this, "fromTask");
     UIO.CheckBeforeReplaceCommandLineArguments(this, "seed");
     UIO.CheckBeforeReplaceCommandLineArguments(this, "intervalSave");
     UIO.CheckBeforeReplaceCommandLineArguments(this, "loadGeneration");
     UIO.CheckBeforeReplaceCommandLineArguments(this, "timeScale");
 }
Example #9
0
        private void btnOK_Click(object sender, EventArgs e)
        {
            var strategyFilter = new StrategyFilter();

            strategyFilter.Days    = Day;
            strategyFilter.Sensors = Sensors;
            var str      = UXmlConvert.GetString(strategyFilter);
            var filename = UWorkspace.GetStrategyXmlName(_wksdef);

            UIO.SaveFile(str, filename);

            DialogResult = DialogResult.OK;
            Close();
        }
Example #10
0
 public override void BuildSessionWriter()
 {
     if (save)
     {
         writerSession = UIO.CreateStreamWriter(GeneratePath(task, true), "DroneSessionParams.csv", false);
         UIO.WriteLine(writerSession, "Task : " + task + ";" +
                       "Seed : " + seed + ";" +
                       "Population Size : " + populationSize + ";" +
                       "Individual Size : " + taskObject.individualSize + ";" +
                       "Mutation Rate : " + mutationRate + ";" +
                       "Random Rate : " + randomIndividualsRate + ";" +
                       "Best Individual Rate : " + bestIndividualsRate + ";" +
                       "Empty Coeff Individual Rate : " + emptyRate + " (" + Mathf.RoundToInt(emptyRate * taskObject.individualSize) + ");" +
                       "MLP layers : [" + string.Join("-", taskObject.shapes.Select(x => x.ToString()).ToArray()) + "] ; Intitial Value Weights :  [" + -initialValueWeights + "," + initialValueWeights + "]");
     }
 }
Example #11
0
        public string Run(Vector <float> externalEvaluations, float theoricBestScore, int intervalSave = 0)
        {
            string generationInfos;

            Evaluation(externalEvaluations, "max");
            if (save)
            {
                UIO.WriteLine(writer, generation + ";" + bestScore + ";" + mean + ";" + stdDeviation + ";" + median);
            }
            if (intervalSave > 0 && generation % intervalSave == 0)
            {
                Debug.Log("Save in Progress");
                SaveGeneration();
            }
            generationInfos = generation + "  | Best Score : " + bestScore + "/" + theoricBestScore + " | Index : " + bestIndividualIndex
                              + "\r\n" + "Score Mean : " + (sumEvaluations / populationSize);
            Selection();
            CrossOver();
            Mutation();
            generation += 1;

            return(generationInfos);
        }
Example #12
0
 public static void LoadBest(string path, int generationIndex, float[] floatArr)
 {
     UIO.LoadFloatArray(path + generationIndex, "/best.gene", floatArr);
 }
Example #13
0
        /**
         * \brief Load the best individual
         * \details load the complete population and the best individual in two files. The path depends on GeneratePath()
         */


        public void LoadBest(int generationIndex, float[] floatArr)
        {
            UIO.LoadFloatArray(GeneratePath() + generationIndex, "/best.gene", floatArr);
        }
Example #14
0
        /**
         * \brief Save the generation
         * \details Save the complete population and the best individual in two files. The path depends on GeneratePath()
         */

        public void SaveGeneration()
        {
            UIO.SaveFloatArray(GeneratePath() + generation, "population.gene", population.ToArray());
            UIO.SaveFloatArray(GeneratePath() + generation, "best.gene", GetBestIndividual().ToArray());
        }