/*
         * for each prediction, this method create a line following this schema:
         * {image_name} {label} {score}
         */
        private List <string> ExportClassificationResult(TomatoClassifier classifier, List <Tomato> testTomatoes)
        {
            var classifiedResult = new List <string>();

            log.LogNewLine("compute label on test images..");
            foreach (Tomato tomato in testTomatoes)
            {
                var score = 0.0;
                var res   = classifier.Classify(tomato.ColoredImage, tomato.GrayImage1, tomato.GrayImage2, out score);
                classifiedResult.Add(tomato.Name + " " + (int)res + " " + score);
            }
            return(classifiedResult);
        }
Example #2
0
 public void CheckPerformance()
 {
     this.images.Clear();
     View.ClearImages();
     log.LogNewLine("eval starts..");
     Train(classifier, tomatoSets[SetType.TRANING]);
     foreach (Tomato tomato in tomatoSets[SetType.VALIDATION])
     {
         log.Log(".");
         double score  = 0;
         var    result = classifier.Classify(tomato.ColoredImage, tomato.GrayImage1, tomato.GrayImage2, out score);
         if (result != (int)tomato.Type)
         {
             this.images.Add(new VisualEvent("WRONG! expeted : " + tomato.Type, tomato.ColoredImage.ToBitmap()));
             //this makes process extraction visualization possible:
             imageExtractor.ExtractDescriptor(tomato.ColoredImage, tomato.GrayImage1, tomato.GrayImage2, (int)tomato.Type);
         }
     }
     log.LogNewLine("");
     View.AddImages(this.images);
 }
        /*
         * this method eval the classifier performance in the validation set.
         * the metrics used are:
         *  - precision;
         *  - recall;
         *  - accuracy;
         *  - confusion matrix.
         */
        private void EvalPerformance(TomatoClassifier classifier, List <Tomato> tomatoes)
        {
            var falsePositive = 0.0;
            var falseNegative = 0.0;
            var truePositive  = 0.0;
            var trueNegative  = 0.0;

            log.LogNewLine("eval...");
            stopWatch.Restart();
            foreach (Tomato tomato in tomatoes)
            {
                log.Log(".");
                double score     = 0;
                var    predicted = classifier.Classify(tomato.ColoredImage, tomato.GrayImage1, tomato.GrayImage2, out score);
                if (predicted == (int)tomato.Type)
                {
                    var updated = predicted == (int)(TomatoType.BAD) ? trueNegative++ : truePositive++;
                }
                else
                {
                    var updated = predicted == (int)(TomatoType.BAD) ? falseNegative++ : falsePositive++;
                }
            }
            stopWatch.Stop();

            log.LogNewLine("");
            log.LogNewLine("predict " + tomatoes.Count / stopWatch.Elapsed.Seconds + " tomatoes per second");
            log.LogNewLine("ends..");
            log.LogNewLine("precision : " + truePositive / (truePositive + falsePositive));
            log.LogNewLine("recall : " + truePositive / (truePositive + falseNegative));
            log.LogNewLine("accuracy : " + (truePositive + trueNegative) / tomatoes.Count);
            log.LogNewLine("-- CONFUSION MATRIX --");
            log.LogNewLine("BAD\t" + trueNegative + "\t" + falseNegative);
            log.LogNewLine("OK \t" + falsePositive + "\t" + truePositive);
            log.LogNewLine("   \tBAD\tOK");
            log.LogNewLine("...");
        }