/// <summary>
        /// Ends the current generation.
        /// </summary>
        /// <returns><c>true</c>, if current generation was ended, <c>false</c> otherwise.</returns>
        private bool EndCurrentGeneration()
        {
            EvaluateFitness();
            Population.EndCurrentGeneration();

            var handler = GenerationRan;

            if (handler != null)
            {
                handler(this, EventArgs.Empty);
            }

            if (Termination.HasReached(this))
            {
                State = GeneticAlgorithmState.TerminationReached;

                handler = TerminationReached;
                if (handler != null)
                {
                    handler(this, EventArgs.Empty);
                }

                return(true);
            }

            if (m_stopRequested)
            {
                TaskExecutor.Stop();
                State = GeneticAlgorithmState.Stopped;
            }

            return(false);
        }
        /// <summary>
        /// Resumes the last evolution of the genetic algorithm.
        /// <remarks>
        /// If genetic algorithm was not explicit Stop (calling Stop method), you will need provide a new extended Termination.
        /// </remarks>
        /// </summary>
        public void Resume()
        {
            try
            {
                lock (m_lock)
                {
                    m_stopRequested = false;
                }

                if (Population.GenerationsNumber == 0)
                {
                    throw new InvalidOperationException("Attempt to resume a genetic algorithm which was not yet started.");
                }

                if (Population.GenerationsNumber > 1)
                {
                    if (Termination.HasReached(this))
                    {
                        throw new InvalidOperationException("Attempt to resume a genetic algorithm with a termination ({0}) already reached. Please, specify a new termination or extend the current one.".With(Termination));
                    }

                    State = GeneticAlgorithmState.Resumed;
                }

                if (EndCurrentGeneration())
                {
                    return;
                }

                bool     terminationConditionReached = false;
                DateTime startDateTime;

                do
                {
                    if (m_stopRequested)
                    {
                        break;
                    }

                    startDateTime = DateTime.Now;
                    terminationConditionReached = EvolveOneGeneration();
                    TimeEvolving += DateTime.Now - startDateTime;
                }while (!terminationConditionReached);
            }
            catch
            {
                State = GeneticAlgorithmState.Stopped;
                throw;
            }
        }
Example #3
0
        public void EvolveNextGeneration()
        {
            try
            {
                lock (m_lock)
                {
                    m_stopRequested = false;
                }

                if (Population.GenerationsNumber == 0)
                {
                    throw new InvalidOperationException("Attempt to resume a genetic algorithm which was not yet started.");
                }

                if (Population.GenerationsNumber > 1)
                {
                    if (Termination.HasReached(this))
                    {
                        throw new InvalidOperationException("Attempt to resume a genetic algorithm with a termination ({0}) already reached. Please, specify a new termination or extend the current one.".With(Termination));
                    }

                    State = GeneticAlgorithmState.Resumed;
                }

                if (EndCurrentGeneration())
                {
                    return;
                }

                bool     terminationConditionReached = false;
                DateTime startDateTime;

                startDateTime = DateTime.Now;

                var parents   = SelectParents();
                var offspring = Cross(parents);
                Mutate(offspring);
                var newGenerationChromosomes = Reinsert(offspring, parents);
                Population.CreateNewGeneration(newGenerationChromosomes);
                TimeEvolving += DateTime.Now - startDateTime;
            }
            catch
            {
                State = GeneticAlgorithmState.Stopped;
                throw;
            }
        }
Example #4
0
        /// <summary>Assigns fitness function value to offsprings and registers new generation in a population.</summary>
        /// <param name="parents">Parents obtained form the ProduceOffsprings node.</param>
        /// <param name="offsprings">Offsprings obtained form the ProduceOffsprings node.</param>
        /// <param name="offspringsFitness">A list of fitness function results for offsprings.</param>
        /// <returns name="algorithm">A genetic algorithm instance supplemented with a new generation.</returns>
        public void ProduceNewGeneration(List <object> parents, List <object> offsprings, List <double> offspringsFitness)
        {
            if (State == GeneticAlgorithmState.TerminationReached)
            {
                return;
            }

            IList <IChromosome> parentsChromosomes = new List <IChromosome>();

            foreach (object parent in parents)
            {
                parentsChromosomes.Add((IChromosome)parent);
            }
            IList <IChromosome> offspringsChromosomes = new List <IChromosome>();

            foreach (object offspring in offsprings)
            {
                offspringsChromosomes.Add((IChromosome)offspring);
                offspringsChromosomes.Last().Fitness = offspringsFitness[offsprings.IndexOf(offspring)];
            }

            Population.MinSize = Population.MaxSize;

            var newGenerationChromosomes = Reinsert(offspringsChromosomes, parentsChromosomes);

            while (newGenerationChromosomes.Count < Population.CurrentGeneration.Chromosomes.Count())
            {
                newGenerationChromosomes = Reinsert(newGenerationChromosomes, parentsChromosomes);
            }
            Population.CreateNewGeneration(newGenerationChromosomes);
            Population.EndCurrentGeneration();

            if (Termination.HasReached(this) || (Population.GenerationsNumber >= maxNumberOfIterations))
            {
                State = GeneticAlgorithmState.TerminationReached;

                TimeEvolving = Timer.Elapsed;
                Timer.Stop();
            }
        }
Example #5
0
        /// <summary>
        /// Ends the current generation.
        /// </summary>
        /// <returns><c>true</c>, if current generation was ended, <c>false</c> otherwise.</returns>
        private bool EndCurrentGeneration()
        {
            EvaluateFitness();
            Population.EndCurrentGeneration();

            if (GenerationRan != null)
            {
                GenerationRan(this, EventArgs.Empty);
            }

            if (Termination.HasReached(this))
            {
                State = GeneticAlgorithmState.TerminationReached;

                if (TerminationReached != null)
                {
                    TerminationReached(this, EventArgs.Empty);
                }

                //Console.ForegroundColor = ConsoleColor.DarkGreen;
                //Console.WriteLine("Pick List Genetic Algorithm termination criteria are met.");
                //Console.ResetColor();
                return(true);
            }

            if (m_stopRequested)
            {
                TaskExecutor.Stop();
                State = GeneticAlgorithmState.Stopped;
            }

            //Console.ForegroundColor = ConsoleColor.Cyan;
            //Console.WriteLine("Pick List Genetic Algorithm will continue to evolve...");
            //Console.ResetColor();
            //Console.WriteLine();
            return(false);
        }
Example #6
0
        /// <summary>
        /// Ends the current generation.
        /// </summary>
        /// <returns><c>true</c>, if current generation was ended, <c>false</c> otherwise.</returns>
        private bool EndCurrentGeneration()
        {
            if (_debugging)
            {
                Console.WriteLine("Starting fitness evaluation");
                timer.Reset();
                timer.Start();
            }


            // Insert multithreading here?



            try
            {
                foreach (var spec in Species)
                {
                    TaskExecutorFitMaster.Add(() => {
                        EvaluateFitness(spec);
                    });
                }
                if (!TaskExecutorFitMaster.Start())
                {
                    throw new TimeoutException("The fitness evaluation rech the {0} timeout.".With(TaskExecutorFitMaster.Timeout));
                }
            }
            finally
            {
                TaskExecutorFitMaster.Stop();
                TaskExecutorFitMaster.Clear();
            }


            if (_debugging)
            {
                Console.WriteLine("Evolved a generation. About to calculate fitness and end it. Time at {0}", timer.Elapsed.ToString());
                timer.Stop();
            }



            if (_debugging)
            {
                Console.WriteLine("Calculating Fitness done. Timer at {0}", timer.Elapsed);
                timer.Stop();
                timer.Reset();
                Console.WriteLine("Starting reinsertion");
                timer.Start();
            }


            foreach (var spec in Species)
            {
                spec.EndCurrentGeneration();
            }

            if (_debugging)
            {
                Console.WriteLine("Reinsertion done. Timer at {0}", timer.Elapsed);
                timer.Stop();
            }

            GenerationsNumber++;

            //update uber best set
            if (UberBestSet == null || UberBestSet.Count == 0)
            {
                UberBestSet = new List <IChromosome> ();
                foreach (IChromosome c in BestChromosomeSet)
                {
                    UberBestSet.Add(c.Clone());
                }
            }
            else
            {
                for (int i = 0; i < BestChromosomeSet.Count; i++)
                {
                    if (UberBestSet [i].Fitness < BestChromosomeSet [i].Fitness)
                    {
                        UberBestSet [i] = BestChromosomeSet [i].Clone();
                    }
                }
            }

            if (GenerationRan != null)
            {
                GenerationRan(this, EventArgs.Empty);
            }

            if (Termination.HasReached(this))
            {
                State = GeneticAlgorithmState.TerminationReached;

                if (TerminationReached != null)
                {
                    TerminationReached(this, EventArgs.Empty);
                }

                return(true);
            }

            if (m_stopRequested)
            {
                TaskExecutorGen.Stop();
                TaskExecutorFit.Stop();
                State = GeneticAlgorithmState.Stopped;
            }

            return(false);
        }