Example #1
0
        /// <summary>
        /// Clips tensor values to a maximum L2-norm.
        /// </summary>
        /// <remarks>
        /// <para>
        /// Given a tensor <paramref name="x"/>, and a maximum clip value <paramref name="clip_norm"/>, this operation normalizes
        /// <paramref name="x"/> so that its L2-norm is less than or equal to <paramref name="clip_norm"/>, along the dimensions
        /// given in <paramref name="axes"/>. Specifically, in the default case where all dimensions are used for calculation, if
        /// the L2-norm of <paramref name="x"/> is already less than or equal to <paramref name="clip_norm"/>, then <paramref name="x"/>
        /// is not modified. If the L2-norm is greater than <paramref name="clip_norm"/>, then this operation returns a tensor of
        /// the same type and shape as <paramref name="x"/> with its values set to: <c>t* clip_norm / l2norm(t)</c></para>
        /// </remarks>
        /// <param name="x">The tensor.</param>
        /// <param name="clip_norm">The minimum value to clip by. A 0 - D(scalar) tensor, or a tensor with the same shape as <paramref name="x"/>.</param>
        /// <param name="axes">The minimum value to clip by. A 0 - D(scalar) tensor, or a tensor with the same shape as <paramref name="x"/>.</param>
        /// <param name="operName">Operation name, optional.</param>
        /// <returns>A clipped <see cref="TFOutput">tensor</see>.</returns>
        public TFOutput ClipByNorm(TFOutput x, TFOutput clip_norm, TFOutput?axes = null, string operName = null)
        {
            // https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/ops/clip_ops.py#L73
            var scopeName = MakeName("ClipByNorm", operName);

            using (var newScope = WithScope(scopeName)) {
                // Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
                var l2norm_inv   = Rsqrt(ReduceSum(Mul(x, x), axes, keep_dims: true));
                var intermediate = Mul(x, clip_norm);

                var tclip = Identity(Mul(intermediate, Minimum(l2norm_inv, Div(Const(new TFTensor(1.0)), clip_norm), operName: operName)));

                return(tclip);
            }
        }
Example #2
0
        /// <summary>
        /// Clips tensor values to a maximum average L2-norm.
        /// </summary>
        /// <remarks>
        /// Given a tensor <paramref name="x"/>, and a maximum clip value <paramref name="clip_norm"/>, this operation
        /// normalizes <paramref name="x"/> so that its its average L2-norm is less than or equal to <paramref name="clip_norm"/>.
        /// Specifically, if the average L2-norm is already less than or equal to <paramref name="clip_norm"/>, then <paramref name="x"/>
        /// is not modified. If the average L2-norm is greater than <paramref name="clip_norm"/>, then this operation returns a tensor of the same
        /// type and shape as <paramref name="x"/> with its values set to: <c>t* clip_norm / l2norm_avg(t)</c>. In this case,
        /// the average L2-norm of the output tensor is <paramref name="clip_norm"/>.
        /// </remarks>
        /// <param name="x">The input tensor.</param>
        /// <param name="clip_norm">A maximum clipping value.</param>
        /// <param name="operName">Name of the oper.</param>
        public TFOutput ClipByAverageNorm(TFOutput x, TFOutput clip_norm, string operName = null)
        {
            // https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/ops/clip_ops.py#L251
            var scopeName = MakeName("ClipByAverageNorm", operName);

            using (var newScope = WithScope(scopeName)) {
                // Calculate L2-norm per element, clip elements by ratio of clip_norm to
                // L2-norm per element
                TFOutput n_element  = Cast(Size(x), TFDataType.Float);
                TFOutput l2norm_inv = Rsqrt(ReduceSum(Mul(x, x), Range(Rank(x))));
                TFOutput tclip      = Identity(Mul(Mul(x, clip_norm), Minimum(Mul(l2norm_inv, n_element), Div(Const(new TFTensor(1.0)), clip_norm)), operName: operName));

                return(tclip);
            }
        }
        public void Should_EvaluateBitwiseAnd(int aValue, int bValue, int expected)
        {
            using (var graph = new TFGraph())
                using (var session = new TFSession(graph))
                {
                    TFOutput a = graph.Placeholder(TFDataType.Int32);
                    TFOutput b = graph.Placeholder(TFDataType.Int32);

                    TFOutput y = graph.BitwiseAnd(a, b);

                    TFTensor[] result = session.Run(new[] { a, b }, new TFTensor[] { aValue, bValue }, new[] { y });

                    Assert.Equal(expected, (int)result[0].GetValue());
                }
        }
        public static TFGraph ImConvertGraph(TFTensor image, out TFOutput input, out TFOutput output)
        {
            var graph = new TFGraph();

            input = graph.Placeholder(TFDataType.String);
            const int W = 28;
            const int H = 28;

            output = graph.Div(graph.ResizeBilinear(graph.ExpandDims(graph.Cast(
                                                                         graph.DecodePng(contents: input, channels: 1), DstT: TFDataType.Float),
                                                                     dim: graph.Const(0)), size: graph.Const(new int[] { W, H })
                                                    ), y: graph.Const((float)255)
                               );
            return(graph);
        }
Example #5
0
        private static void ConstructGraphToNormalizeImage(out TFGraph graph, out TFOutput input, out TFOutput output, TFDataType destinationDataType = TFDataType.Float)
        {
            graph = new TFGraph();
            input = graph.Placeholder(TFDataType.String);

            output = graph.Cast(graph.Div(
                                    x: graph.Sub(
                                        x: graph.ResizeBilinear(
                                            images: graph.ExpandDims(
                                                input: graph.Cast(
                                                    graph.DecodeJpeg(contents: input, channels: 3), DstT: TFDataType.Float),
                                                dim: graph.Const(0, "make_batch")),
                                            size: graph.Const(new int[] { W, H }, "size")),
                                        y: graph.Const(Mean, "mean")),
                                    y: graph.Const(Scale, "scale")), destinationDataType);
        }
Example #6
0
        public void Should_CalculateTanhGrad_Correctly()
        {
            using (TFGraph graph = new TFGraph())
                using (TFSession session = new TFSession(graph))
                {
                    TFOutput x    = graph.Const(new TFTensor(0.7));
                    TFOutput y    = graph.Tanh(x);
                    TFOutput dy   = graph.Const(new TFTensor(new [] { 1.0 }));
                    TFOutput grad = graph.TanhGrad(y, dy);

                    TFTensor [] result = session.Run(new TFOutput [] { }, new TFTensor [] { }, new [] { grad });

                    double value = (double)result [0].GetValue();
                    Assert.Equal(0.634739589982459, value, 15);
                }
        }
Example #7
0
        /// <summary>
        /// Variable node, with a starting initial value.  Convenience that registers the init variable to a global queue.
        /// </summary>
        /// <param name="initialValue">Initial value.</param>
        /// <param name="operName">Operation name, optional.</param>
        /// <returns>The returning TFOutput returns the handle to the variable.</returns>
        /// <remarks>
        /// Variables need to be initialized before the main execution so you will typically want to
        /// run the session on the variable.
        ///
        /// The init sequence for the variable is stored in the graph, you must manually initialize
        /// those by running the session on the global variables.
        /// </remarks>
        public TFOutput Variable(TFOutput initialValue, string operName = null)
        {
            var scopeName = MakeName("Variable", operName);

            using (var newScope = WithScope(scopeName)) {
                var type = initialValue.OutputType;

                // This should be VariableV2, but requires Ref support in the C API.
                var handle = VarHandleOp(type, new TFShape(GetShape(initialValue)));
                using (var aScope = WithScope("Assign")) {
                    var init = AssignVariableOp(handle, initialValue);
                    AddInitVariable(init);
                    return(handle);
                }
            }
        }
Example #8
0
        /// <summary>
        /// Variable node, with a starting initial value.
        /// </summary>
        /// <param name="initialValue">Initial value.</param>
        /// <param name="init">Returns the operation that initializes the value of the variable.</param>
        /// <param name="value">Returns the value of the variable.</param>
        /// <param name="operName">Operation name, optional.</param>
        /// <returns>The returning TFOutput returns the handle to the variable.</returns>
        /// <remarks>
        /// Variables need to be initialized before the main execution so you will typically want to
        /// run the session on the variable
        /// </remarks>
        public TFOutput Variable(TFOutput initialValue, out TFOperation init, out TFOutput value, string operName = null)
        {
            var scopeName = MakeName("Variable", operName);

            using (var newScope = WithScope(scopeName)) {
                var type   = initialValue.OutputType;
                var handle = VarHandleOp(type, new TFShape(GetShape(initialValue)));
                using (var aScope = WithScope("Assign")) {
                    init = AssignVariableOp(handle, initialValue);
                    using (var rScope = WithScope("Read")) {
                        value = ReadVariableOp(handle, type);
                        return(handle);
                    }
                }
            }
        }
Example #9
0
        private TFOutput AddActivation(TFGraph graph, TFOutput y, ActivationFunctionType fusedActivationFunction, Layer nonTrivialActivation)
        {
            if (fusedActivationFunction != ActivationFunctionType.Linear)
            {
                y = graph.AddActivation(y, fusedActivationFunction);
            }
            else if (nonTrivialActivation != null)
            {
                if (nonTrivialActivation is LeakyRelu leakyRelu)
                {
                    y = graph.Maximum(y, graph.Mul(y, graph.Const(leakyRelu.Slope)));
                }
            }

            return(y);
        }
Example #10
0
        // The inception model takes as input the image described by a Tensor in a very
        // specific normalized format (a particular image size, shape of the input tensor,
        // normalized pixel values etc.).
        //
        // This function constructs a graph of TensorFlow operations which takes as
        // input a JPEG-encoded string and returns a tensor suitable as input to the
        // inception model.
        //
        private static TFGraph ConstructGraphToNormalizeImage(out TFOutput input, out TFOutput output, TFDataType destinationDataType = TFDataType.Float)
        {
            var graph = new TFGraph();

            input = graph.Placeholder(TFDataType.String);

            output = graph.Cast(
                graph.ExpandDims(
                    input: graph.Cast(graph.DecodeJpeg(contents: input, channels: 3), DstT: TFDataType.Float),
                    dim: graph.Const(0, "make_batch")
                    )
                , destinationDataType
                );

            return(graph);
        }
Example #11
0
        public void Should_Stack(double[] x, double[] y, double[] z, int?axis, double[,] expected)
        {
            using (var graph = new TFGraph())
                using (var session = new TFSession(graph))
                {
                    var a = graph.Placeholder(TFDataType.Double, new TFShape(2));
                    var b = graph.Placeholder(TFDataType.Double, new TFShape(2));
                    var c = graph.Placeholder(TFDataType.Double, new TFShape(2));

                    TFOutput r = graph.Stack(new[] { a, b, c }, axis: axis);

                    TFTensor[] result = session.Run(new[] { a, b, c }, new TFTensor[] { x, y, z }, new[] { r });

                    double[,] actual = (double[, ])result[0].GetValue();
                    TestUtils.MatrixEqual(expected, actual, precision: 10);
                }
        }
Example #12
0
        public static TFOutput AddActivation(this TFGraph graph, TFOutput input, ActivationFunctionType activation)
        {
            switch (activation)
            {
            case ActivationFunctionType.Linear:
                return(input);

            case ActivationFunctionType.Relu:
                return(graph.Relu(input));

            case ActivationFunctionType.Relu6:
                return(graph.Relu6(input));

            default:
                throw new NotSupportedException();
            }
        }
Example #13
0
        public void Should_ClipByValue(double[,] m, double min, double max, double[,] expected)
        {
            using (var graph = new TFGraph())
                using (var session = new TFSession(graph))
                {
                    var matrix   = graph.Placeholder(TFDataType.Double);
                    var clip_min = graph.Placeholder(TFDataType.Double);
                    var clip_max = graph.Const(new TFTensor(max));

                    TFOutput y = graph.ClipByValue(matrix, clip_min, clip_max);

                    TFTensor[] result = session.Run(new[] { matrix, clip_min }, new TFTensor[] { m, min }, new[] { y });

                    double[,] actual = (double[, ])result[0].GetValue();
                    Assert.Equal(expected, actual);
                }
        }
Example #14
0
        // Convert the image in filename to a Tensor suitable as input to the Inception model.
        static TFTensor CreateTensorFromImageFile(byte[] contents)
        {
            // DecodeJpeg uses a scalar String-valued tensor as input.
            var      inputTensor = TFTensor.CreateString(contents);
            TFGraph  graph       = new TFGraph();
            TFOutput input       = graph.Placeholder(TFDataType.String);
            TFOutput output      = graph.DecodeJpeg(contents: input, channels: 3);

            using (var session = new TFSession(graph))
            {
                var tensor = session.Run(
                    inputs: new[] { input },
                    inputValues: new[] { inputTensor },
                    outputs: new[] { output });
                return(tensor[0]);
            }
        }
Example #15
0
        public ObjectDetector(string graphPath)
        {
            using (var graph = new TFGraph())
            {
                var model = File.ReadAllBytes(graphPath);
                graph.Import(new TFBuffer(model));

                this._session = new TFSession(graph);
                this._detectionInputTensor   = graph["image_tensor"][0];
                this._detectionOutputTensors = new[]
                {
                    graph["detection_boxes"][0],
                    graph["detection_scores"][0],
                    graph["detection_classes"][0],
                    // graph["num_detections"][0],
                };
            }
        }
 public void Train(List <TFTensor> inputs, List <TFTensor> expectedOutputs, int numEpochs)
 {
     for (int i = 0; i < numEpochs; i++)
     {
         int      test           = Random.Next(0, inputs.Count);
         TFTensor expectedOutput = expectedOutputs[test];
         TFTensor actualOutput   = Think(inputs[test]);
         TFTensor error;
         using (TFGraph graph = new TFGraph())
         {
             TFOutput  expected    = graph.Const(expectedOutput);
             TFOutput  actual      = graph.Const(actualOutput);
             TFOutput  errorOutput = graph.Sub(expected, actual);
             TFSession session     = new TFSession(graph);
             error = session.GetRunner().Run(errorOutput);
         }
     }
 }
		// Returns range(0, rank(x)) if reduction_indices is null
		TFOutput ReduceDims (TFOutput input, TFOutput? axis = null)
		{
			if (axis.HasValue)
				return axis.Value;

			// Fast path: avoid creating Rank and Range ops if ndims is known.
			var shape = GetTensorShape (input);
			if (shape.Length >= 0) {
				// The python code distinguishes between tensor and sparsetensor

				var array = new int [shape.Length];
				for (int i = 0; i < array.Length; i++)
					array [i] = i;

				return this.Const (array, TFDataType.Int32);                   
			}
			return Range (Const (0), Const (shape.Length), Const (1));
		}
Example #18
0
        /// <summary>
        /// Computes the global norm of multiple tensors.
        /// </summary>
        /// <remarks>
        /// <para>
        ///  Given a tuple or list of tensors <paramref name="tensors"/>, this operation returns the global norm of the elements in all tensors
        ///  in <paramref name="tensors"/>. The global norm is computed as: <c>global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))</c>. Any
        ///  entries in <paramref name="tensors"/> that are of type None are ignored.</para>
        /// </remarks>
        /// <param name="tensors">The input tensors.</param>
        /// <param name="operName">Operation name, optional.</param>
        /// <returns>A clipped <see cref="TFOutput">tensor</see>.</returns>
        public TFOutput GlobalNorm(TFOutput [] tensors, string operName = null)
        {
            // https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/ops/clip_ops.py#L122
            var scopeName = MakeName("GlobalNorm", operName);

            using (var newScope = WithScope(scopeName)) {
                TFOutput [] half_squared_norms = new TFOutput [tensors.Length];

                for (int i = 0; i < half_squared_norms.Length; i++)
                {
                    half_squared_norms [i] = L2Loss(tensors [i]);
                }

                TFOutput half_squared_norm = ReduceSum(Stack(half_squared_norms));
                TFOutput norm = Sqrt(Mul(half_squared_norm, Const(2.0)), operName: "global_norm");
                return(norm);
            }
        }
Example #19
0
 /// <summary>
 /// Create learning rate time decay operation.
 /// </summary>
 protected void CreateDecayOps(float decay, TFOutput initialLearningRate)
 {
     if (decay > 0)
     {
         var _decay = _graph.Const(decay, "Decay");
         var one    = _graph.Const(1f);
         _updateOps.Add(_graph.AssignVariableOp(LearningRate,
                                                _graph.Mul(initialLearningRate,
                                                           _graph.Div(one,
                                                                      _graph.Add(one,
                                                                                 _graph.Mul(_decay,
                                                                                            _graph.Cast(Iterations.Read, _decay.OutputType)
                                                                                            )
                                                                                 )
                                                                      )
                                                           )));
     }
 }
Example #20
0
        public void TestSession()
        {
            var status = new TFStatus();

            using (var graph = new TFGraph()) {
                var feed = Placeholder(graph, status);
                var two  = ScalarConst(2, graph, status);
                var add  = Add(feed, two, graph, status);
                Assert(status);

                // Create a session for this graph
                using (var session = new TFSession(graph, status)) {
                    Assert(status);

                    // Run the graph
                    var inputs = new TFOutput [] {
                        new TFOutput(feed, 0)
                    };
                    var input_values = new TFTensor [] {
                        3
                    };
                    var outputs = new TFOutput [] {
                        new TFOutput(add, 0)
                    };
                    var output_values = new TFTensor [] {
                        3
                    };

                    var results = session.Run(runOptions: null,
                                              inputs: inputs,
                                              inputValues: input_values,
                                              outputs: outputs,
                                              targetOpers: null,
                                              runMetadata: null,
                                              status: status);
                    Assert(status);
                    var res = results [0];
                    Assert(res.TensorType == TFDataType.Int32);
                    Assert(res.NumDims == 0);                      // Scalar
                    Assert(res.TensorByteSize == (UIntPtr)4);
                    Assert(Marshal.ReadInt32(res.Data) == 3 + 2);
                }
            }
        }
Example #21
0
        private static TFGraph ConstructGraphToNormalizeRawImage(out TFOutput input, out TFOutput output, int resizeWidth, int resizeHeight,
                                                                 TFDataType destinationDataType = TFDataType.Float)
        {
            // Some constants specific to the pre-trained model at:
            // https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
            //
            // - The model was trained after with images scaled to 224x224 pixels.
            // - The colors, represented as R, G, B in 1-byte each were converted to
            //   float using (value - Mean)/Scale.

            const float Mean  = 117;
            const float Scale = 1;

            //var graph = new TFGraph();

            //input = graph.Placeholder(TFDataType.UInt8);
            //output = graph.Cast(graph.Div(
            //    x: graph.Sub(
            //        x: graph.ResizeBilinear(
            //            images: graph.ExpandDims(
            //                input: graph.Cast(input, DstT: TFDataType.Float),
            //                dim: graph.Const(0, "make_batch")),
            //            size: graph.Const(new int[] { resizeWidth, resizeHeight }, "size")),
            //        y: graph.Const(Mean, "mean")),
            //    y: graph.Const(Scale, "scale")), destinationDataType);

            //return graph;



            var graph = new TFGraph();

            input = graph.Placeholder(TFDataType.UInt8);

            output = graph.Cast(
                graph.ExpandDims(
                    input: graph.Cast(input, DstT: TFDataType.Float),
                    dim: graph.Const(0, "make_batch")
                    )
                , destinationDataType
                );

            return(graph);
        }
        public void MNISTTwoHiddenLayerNetworkGPUTest()
        {
            // Parameters
            var learningRate = 0.1f;
            var epochs       = 5;
            var numGPUs      = 4;

            var mnist = new Mnist();

            mnist.ReadDataSets("/tmp");
            int batchSize  = 400;
            int numBatches = mnist.TrainImages.Length / batchSize;

            using (var graph = new TFGraph())
            {
                var X = graph.Placeholder(TFDataType.Float, new TFShape(-1, 784));
                var Y = graph.Placeholder(TFDataType.Float, new TFShape(-1, 10));

                var Xs = graph.Split(graph.Const(0), X, numGPUs);
                var Ys = graph.Split(graph.Const(0), Y, numGPUs);

                var        sgd                   = new SGD(graph, learningRate, 0.9f);
                TFOutput[] costs                 = new TFOutput[numGPUs];
                TFOutput[] accuracys             = new TFOutput[numGPUs];
                var        variablesAndGradients = new Dictionary <Variable, List <TFOutput> >();
                for (int i = 0; i < numGPUs; i++)
                {
                    using (var device = graph.WithDevice("/GPU:" + i))
                    {
                        (costs[i], _, accuracys[i]) = CreateNetwork(graph, Xs[i], Ys[i], variablesAndGradients);
                        foreach (var gv in sgd.ComputeGradient(costs[i], colocateGradientsWithOps: true))
                        {
                            if (!variablesAndGradients.ContainsKey(gv.variable))
                            {
                                variablesAndGradients[gv.variable] = new List <TFOutput>();
                            }
                            variablesAndGradients[gv.variable].Add(gv.gradient);
                        }
                    }
                }
                var cost     = graph.ReduceMean(graph.Stack(costs));
                var accuracy = graph.ReduceMean(graph.Stack(accuracys));

                var gradientsAndVariables = new (TFOutput gradient, Variable variable)[variablesAndGradients.Count];
        static void Main(string[] args)
        {
            using (var session = new TFSession())
            {
                TFGraph  graph = session.Graph;
                TFOutput a     = graph.Const(2);
                TFOutput b     = graph.Const(3);
                Console.WriteLine("a=2, b=3");
                // 상수 더하기
                TFTensor addProcess = session.GetRunner().Run(graph.Add(a, b));
                string   Result     = addProcess.GetValue().ToString();
                Console.WriteLine("a+b={0}", Result);
                // 상수 곱하기
                TFTensor multiProcess = session.GetRunner().Run(graph.Mul(a, b));
                Result = multiProcess.GetValue().ToString();

                Console.ReadLine();
            }
        }
Example #24
0
        /// <summary>
        /// Computes dropout.
        /// </summary>
        /// <param name="x">A tensor.</param>
        /// <param name="keep_prob">A scalar Tensor with the same type as x. The probability that each element is kept.</param>
        /// <param name="noise_shape">A 1-D Tensor of type int32, representing the shape for randomly generated keep/drop flags.</param>
        /// <param name="seed">Integer seed used for the random distribution, using the TensorFlow SetRandomSeed .</param>
        /// <param name="operName">Operation name, optional.</param>
        /// <remarks>
        /// With probability keep_prob, outputs the input element scaled up by 1 / keep_prob,
        /// otherwise outputs 0. The scaling is so that the expected sum is unchanged.
        /// </remarks>
        public TFOutput Dropout(TFOutput x, double keep_prob, TFShape noise_shape = null, int?seed = null, string operName = null)
        {
            if (keep_prob < 0 || keep_prob >= 1)
            {
                throw new ArgumentOutOfRangeException("keep_prob must be a scalar tensor or a float in the range (0, 1], got " + keep_prob);
            }

            if (keep_prob == 1)
            {
                return(x);
            }

            var scopeName = MakeName("dropout", operName);

            using (var newScope = WithScope(scopeName)) {
                var tkeep_prob = Const(keep_prob);
                return(Dropout(x, tkeep_prob, noise_shape, seed, operName));
            }
        }
        // Returns range(0, rank(x)) if reduction_indices is null
        TFOutput ReduceDims(TFOutput input, TFOutput?axis = null)
        {
            if (axis.HasValue)
            {
                return(axis.Value);
            }

            // Fast path: avoid creating Rank and Range ops if ndims is known.
            var shape = GetTensorShape(input);

            if (shape.IsFullySpecified)
            {
                // The python code distinguishes between tensor and sparsetensor

                return(this.Const(shape.ToIntArray(), TFDataType.Int32));
            }
            // Otherwise, we rely on Range and Rank to do the right thing at run-time.
            return(Range(Const(0), Rank(input), Const(1)));
        }
Example #26
0
        private static TFGraph ConstructGraphToNormalizeImage(int channel, out TFOutput input, out TFOutput output)
        {
            var graph = new TFGraph();

            input  = graph.Placeholder(TFDataType.String);
            output =
                //[1 * W * H * RGB / 255]
                graph.ExpandDims(
                    //[W * H * RGB / 255]
                    graph.Div(
                        //[W * H * RGB]
                        graph.Transpose(
                            //[H * W * RGB]
                            graph.Cast(graph.DecodeBmp(contents: input, channels: channel), DstT: TFDataType.Float)
                            , graph.Const(new int[] { 1, 0, 2 }))
                        , y: graph.Const(255f))
                    , dim: graph.Const(0));
            return(graph);
        }
        public LinearLayer(TFGraph graph, int inSize, int outSize)
        {
            var wShape = new TFShape(inSize, outSize);

            W = graph.VariableV2(wShape, TFDataType.Float);

            TFOutput initFactor = graph.Sqrt(graph.Div(graph.Const(2F), graph.Const((float)inSize)));

            TFOutput initialW = graph.Mul(graph.Cast(graph.RandomNormal(wShape, 0, 1), TFDataType.Float), initFactor);

            InitW = graph.Assign(W, initialW);

            var bShape = new TFShape(outSize);

            b = graph.VariableV2(bShape, TFDataType.Float);

            TFOutput initialB = graph.Zeros(bShape, TFDataType.Float);

            InitB = graph.Assign(b, initialB);
        }
        public void Apply(TFGraph graph, float learningRate = 0.01F, float beta1 = 0.9F, float beta2 = 0.999F, float eps = 1e-8F)
        {
            TFOutput tfLearningRate = graph.Const(learningRate);

            TFOutput tfBeta1 = graph.Const(beta1);

            TFOutput tfBeta2 = graph.Const(beta2);

            TFOutput tfEps = graph.Const(eps);

            TFOutput tfBeta1Power = graph.Const(beta1);

            TFOutput tfBeta2Power = graph.Const(beta2);


            for (int i = 0; i < _variables.Count; i++)
            {
                Operations.Add(graph.ApplyAdam(_variables[i], _m[i], _v[i], tfBeta1Power, tfBeta2Power, tfLearningRate, tfBeta1, tfBeta2, tfEps, _gradients[i], null, true).Operation);
            }
        }
Example #29
0
        public IModelResult Eval(IFeatures feature)
        {
            var inputValuesTensors = feature.GetFeaturesTensors();

            TFOutput output = new TFOutput();
            TFOutput input  = new TFOutput();

            lock (_graph)
            {
                using (var session = new TFSession(Graph))
                {
                    var result = session.Run(
                        inputs: new[] { input },
                        inputValues: inputValuesTensors.ToArray(),
                        outputs: new[] { output });

                    return(ResultConvertor.Convert(result));
                }
            }
        }
        public void tf_random_normal_test()
        {
            using (var graph = new TFGraph())
                using (var session = new TFSession(graph))
                {
                    TFOutput y = graph.RandomNormal(new TFShape(1000, 100), mean: 42, stddev: 0.4, seed: 1337);

                    TFTensor[] result = session.Run(new TFOutput[] { }, new TFTensor[] { }, new[] { y });

                    object output = result[0].GetValue();
                    double[,] actual = (double[, ])output;

                    Assert.AreEqual(1000, actual.Rows());
                    Assert.AreEqual(100, actual.Columns());

                    double actualMean   = actual.Mean();
                    double expectedMean = 42;
                    Assert.AreEqual(expectedMean, actualMean, 1e-2);
                }
        }