public TCLEDMHardware() { //Add the boards Boards.Add("tclBoardPump", "/PXI1Slot5"); Boards.Add("tclBoardProbe", "/PXI1Slot2"); string tclBoardPump = (string)Boards["tclBoardPump"]; string tclBoardProbe = (string)Boards["tclBoardProbe"]; // Cavity inputs for the cavity that controls the Pump lasers AddAnalogInputChannel("PumpCavityRampVoltage", tclBoardPump + "/ai8", AITerminalConfiguration.Rse); //tick AddAnalogInputChannel("Pumpmaster", tclBoardPump + "/ai1", AITerminalConfiguration.Rse); AddAnalogInputChannel("Pumpp1", tclBoardPump + "/ai2", AITerminalConfiguration.Rse); AddAnalogInputChannel("Pumpp2", tclBoardPump + "/ai3", AITerminalConfiguration.Rse); // Lasers locked to pump cavity AddAnalogOutputChannel("KeopsysDiodeLaser", tclBoardPump + "/ao2", -4, 4); //tick AddAnalogOutputChannel("MenloPZT", tclBoardPump + "/ao0", 0, 10); //tick // Length stabilisation for pump cavity AddAnalogOutputChannel("PumpCavityLengthVoltage", tclBoardPump + "/ao1", -10, 10); //tick //TCL configuration for pump cavity TCLConfig tcl1 = new TCLConfig("Pump Cavity"); tcl1.AddLaser("MenloPZT", "Pumpp1"); tcl1.AddLaser("KeopsysDiodeLaser", "Pumpp2"); tcl1.Trigger = tclBoardPump + "/PFI0"; tcl1.Cavity = "PumpCavityRampVoltage"; tcl1.MasterLaser = "Pumpmaster"; tcl1.Ramp = "PumpCavityLengthVoltage"; tcl1.TCPChannel = 1190; tcl1.AnalogSampleRate = 61250; tcl1.DefaultScanPoints = 500; tcl1.MaximumNLMFSteps = 20; tcl1.PointsToConsiderEitherSideOfPeakInFWHMs = 2.5; tcl1.TriggerOnRisingEdge = false; tcl1.AddFSRCalibration("MenloPZT", 3.84); tcl1.AddFSRCalibration("KeopsysDiodeLaser", 3.84); tcl1.AddDefaultGain("Master", 0.3); tcl1.AddDefaultGain("MenloPZT", -0.2); tcl1.AddDefaultGain("KeopsysDiodeLaser", 4); Info.Add("PumpCavity", tcl1); //Info.Add("DefaultCavity", tcl1); // Probe cavity inputs AddAnalogInputChannel("ProbeRampVoltage", tclBoardProbe + "/ai0", AITerminalConfiguration.Rse); //tick AddAnalogInputChannel("Probemaster", tclBoardProbe + "/ai1", AITerminalConfiguration.Rse); //tick AddAnalogInputChannel("Probep1", tclBoardProbe + "/ai2", AITerminalConfiguration.Rse); //tick // Lasers locked to Probe cavity AddAnalogOutputChannel("TopticaSHGPZT", tclBoardProbe + "/ao0", -4, 4); //tick AddAnalogOutputChannel("ProbeCavityLengthVoltage", tclBoardProbe + "/ao1", -10, 10); //tick // TCL configuration for Probe cavity TCLConfig tcl2 = new TCLConfig("Probe Cavity"); tcl2.AddLaser("TopticaSHGPZT", "Probep1"); tcl2.Trigger = tclBoardProbe + "/PFI0"; tcl2.Cavity = "ProbeRampVoltage"; tcl2.MasterLaser = "Probemaster"; tcl2.Ramp = "ProbeCavityLengthVoltage"; tcl2.TCPChannel = 1191; tcl2.AnalogSampleRate = 61250 / 2; tcl2.DefaultScanPoints = 250; tcl2.MaximumNLMFSteps = 20; tcl2.PointsToConsiderEitherSideOfPeakInFWHMs = 12; tcl2.AddFSRCalibration("TopticaSHGPZT", 3.84); tcl2.TriggerOnRisingEdge = false; tcl2.AddDefaultGain("Master", 0.4); tcl2.AddDefaultGain("TopticaSHGPZT", 0.04); Info.Add("ProbeCavity", tcl2); Info.Add("DefaultCavity", tcl2); }
public PXIEDMHardware() { // add the boards Boards.Add("rfPulseGenerator", "PXI1Slot4"); Boards.Add("daq", "/PXI1Slot18"); Boards.Add("pg", "/PXI1Slot10"); Boards.Add("counter", "/PXI1Slot16"); Boards.Add("aoBoard", "/PXI1Slot2"); // this drives the rf attenuators Boards.Add("usbDAQ1", "/Dev6"); Boards.Add("analogIn", "/PXI1Slot15"); Boards.Add("usbDAQ2", "/Dev1"); Boards.Add("usbDAQ3", "/Dev2"); Boards.Add("usbDAQ4", "/Dev5"); Boards.Add("tclBoardPump", "/PXI1Slot17"); Boards.Add("tclBoardProbe", "/PXI1Slot9"); string rfPulseGenerator = (string)Boards["rfPulseGenerator"]; string pgBoard = (string)Boards["pg"]; string daqBoard = (string)Boards["daq"]; string counterBoard = (string)Boards["counter"]; string aoBoard = (string)Boards["aoBoard"]; string usbDAQ1 = (string)Boards["usbDAQ1"]; string analogIn = (string)Boards["analogIn"]; string usbDAQ2 = (string)Boards["usbDAQ2"]; string usbDAQ3 = (string)Boards["usbDAQ3"]; string usbDAQ4 = (string)Boards["usbDAQ4"]; string tclBoardPump = (string)Boards["tclBoardPump"]; string tclBoardProbe = (string)Boards["tclBoardProbe"]; // add things to the info // the analog triggersf Info.Add("analogTrigger0", (string)Boards["analogIn"] + "/PFI0"); Info.Add("analogTrigger1", (string)Boards["analogIn"] + "/PFI1"); Info.Add("sourceToDetect", 1.3); Info.Add("moleculeMass", 193.0); Info.Add("machineLengthRatio", 3.842); Info.Add("defaultGate", new double[] { 2190, 80 }); Info.Add("phaseLockControlMethod", "synth"); Info.Add("PGClockLine", pgBoard + "/PFI4"); //Mapped to PFI2 on 6533 connector Info.Add("PatternGeneratorBoard", pgBoard); Info.Add("PGType", "dedicated"); // rf counter switch control seq`` Info.Add("IodineFreqMon", new bool[] { false, false }); // IN 1 Info.Add("pumpAOMFreqMon", new bool[] { false, true }); // IN 2 Info.Add("FLModulationFreqMon", new bool[] { true, false }); // IN 3 Info.Add("PGTrigger", pgBoard + "/PFI5"); //Mapped to PFI7 on 6533 connector // YAG laser yag = new BrilliantLaser("ASRL21::INSTR"); // add the GPIB/RS232 instruments Instruments.Add("green", new HP8657ASynth("GPIB0::7::INSTR")); Instruments.Add("gigatronix", new Gigatronics7100Synth("GPIB0::19::INSTR")); Instruments.Add("red", new HP3325BSynth("GPIB0::12::INSTR")); Instruments.Add("4861", new ICS4861A("GPIB0::4::INSTR")); Instruments.Add("bCurrentMeter", new HP34401A("GPIB0::22::INSTR")); Instruments.Add("rfCounter", new Agilent53131A("GPIB0::3::INSTR")); //Instruments.Add("rfCounter2", new Agilent53131A("GPIB0::5::INSTR")); Instruments.Add("rfPower", new HP438A("GPIB0::13::INSTR")); Instruments.Add("BfieldController", new SerialDAQ("ASRL19::INSTR")); Instruments.Add("rfCounter2", new SerialAgilent53131A("ASRL17::INSTR")); Instruments.Add("probePolControl", new SerialMotorControllerBCD("ASRL8::INSTR")); Instruments.Add("pumpPolControl", new SerialMotorControllerBCD("ASRL11::INSTR")); // map the digital channels // these channels are generally switched by the pattern generator // they're all in the lower half of the pg AddDigitalOutputChannel("valve", pgBoard, 0, 0); AddDigitalOutputChannel("flash", pgBoard, 0, 1); AddDigitalOutputChannel("q", pgBoard, 0, 2); AddDigitalOutputChannel("detector", pgBoard, 0, 3); AddDigitalOutputChannel("detectorprime", pgBoard, 1, 2); // this trigger is for switch scanning // see ModulatedAnalogShotGatherer.cs // for details. AddDigitalOutputChannel("rfSwitch", pgBoard, 0, 4); AddDigitalOutputChannel("pumprfSwitch", pgBoard, 3, 4); AddDigitalOutputChannel("fmSelect", pgBoard, 1, 0); // This line selects which fm voltage is // sent to the synth. AddDigitalOutputChannel("attenuatorSelect", pgBoard, 0, 5); // This line selects the attenuator voltage // sent to the voltage-controlled attenuator. AddDigitalOutputChannel("piFlip", pgBoard, 1, 1); AddDigitalOutputChannel("ttlSwitch", pgBoard, 1, 3); // This is the output that the pg // will switch if it's switch scanning. AddDigitalOutputChannel("scramblerEnable", pgBoard, 1, 4); //RF Counter Control (single pole 4 throw) //AddDigitalOutputChannel("rfCountSwBit1", pgBoard, 3, 5); //AddDigitalOutputChannel("rfCountSwBit2", pgBoard, 3, 6); // new rf amp blanking AddDigitalOutputChannel("rfAmpBlanking", pgBoard, 1, 5); // these channel are usually software switched - they should not be in // the lower half of the pattern generator AddDigitalOutputChannel("b", pgBoard, 2, 0); AddDigitalOutputChannel("notB", pgBoard, 2, 1); AddDigitalOutputChannel("db", pgBoard, 2, 2); AddDigitalOutputChannel("notDB", pgBoard, 2, 3); // AddDigitalOutputChannel("notEOnOff", pgBoard, 2, 4); // this line seems to be broken on our pg board // AddDigitalOutputChannel("eOnOff", pgBoard, 2, 5); // this and the above are not used now we have analog E control AddDigitalOutputChannel("ePol", pgBoard, 2, 6); AddDigitalOutputChannel("notEPol", pgBoard, 2, 7); AddDigitalOutputChannel("eBleed", pgBoard, 3, 0); AddDigitalOutputChannel("eSwitching", aoBoard, 0, 3); AddDigitalOutputChannel("piFlipEnable", pgBoard, 3, 1); AddDigitalOutputChannel("notPIFlipEnable", pgBoard, 3, 5); AddDigitalOutputChannel("mwEnable", pgBoard, 3, 3); AddDigitalOutputChannel("mwSelectPumpChannel", pgBoard, 3, 6); AddDigitalOutputChannel("mwSelectTopProbeChannel", pgBoard, 3, 2); AddDigitalOutputChannel("mwSelectBottomProbeChannel", pgBoard, 2, 4); // these digitial outputs are are not switched during the pattern AddDigitalOutputChannel("argonShutter", aoBoard, 0, 0); AddDigitalOutputChannel("patternTTL", aoBoard, 0, 7); AddDigitalOutputChannel("rfPowerAndFreqSelectSwitch", aoBoard, 0, 1); AddDigitalOutputChannel("targetStepper", aoBoard, 0, 2);; // map the analog channels // These channels are on the daq board. Used mainly for diagnostic purposes. AddAnalogInputChannel("iodine", daqBoard + "/ai2", AITerminalConfiguration.Nrse); AddAnalogInputChannel("cavity", daqBoard + "/ai3", AITerminalConfiguration.Nrse); AddAnalogInputChannel("probePD", daqBoard + "/ai4", AITerminalConfiguration.Nrse); AddAnalogInputChannel("pumpPD", daqBoard + "/ai5", AITerminalConfiguration.Nrse); AddAnalogInputChannel("northLeakage", daqBoard + "/ai6", AITerminalConfiguration.Nrse); AddAnalogInputChannel("southLeakage", daqBoard + "/ai7", AITerminalConfiguration.Nrse); //AddAnalogInputChannel("northLeakage", usbDAQ4 + "/ai0", AITerminalConfiguration.Rse); //AddAnalogInputChannel("southLeakage", usbDAQ4 + "/ai1", AITerminalConfiguration.Rse); // Used ai13,11 & 12 over 6,7 & 8 for miniFluxgates, because ai8, 9 have an isolated ground. AddAnalogInputChannel("miniFlux1", daqBoard + "/ai13", AITerminalConfiguration.Nrse); AddAnalogInputChannel("miniFlux2", daqBoard + "/ai11", AITerminalConfiguration.Nrse); AddAnalogInputChannel("miniFlux3", daqBoard + "/ai12", AITerminalConfiguration.Nrse); AddAnalogInputChannel("ground", daqBoard + "/ai14", AITerminalConfiguration.Nrse); AddAnalogInputChannel("piMonitor", daqBoard + "/ai10", AITerminalConfiguration.Nrse); //AddAnalogInputChannel("diodeLaserRefCavity", daqBoard + "/ai13", AITerminalConfiguration.Nrse); // Don't use ai10, cross talk with other channels on this line // high quality analog inputs (will be) on the S-series analog in board // The last number in AddAnalogInputChannel is an optional calibration which turns VuS and MHz AddAnalogInputChannel("topProbe", analogIn + "/ai0", AITerminalConfiguration.Differential, 0.1); AddAnalogInputChannel("bottomProbe", analogIn + "/ai1", AITerminalConfiguration.Differential, 0.02); AddAnalogInputChannel("magnetometer", analogIn + "/ai2", AITerminalConfiguration.Differential); AddAnalogInputChannel("gnd", analogIn + "/ai3", AITerminalConfiguration.Differential); AddAnalogInputChannel("battery", analogIn + "/ai4", AITerminalConfiguration.Differential); //AddAnalogInputChannel("piMonitor", analogIn + "/ai5", AITerminalConfiguration.Differential); //AddAnalogInputChannel("bFieldCurrentMonitor", analogIn + "/ai6", AITerminalConfiguration.Differential); AddAnalogInputChannel("reflectedrf1Amplitude", analogIn + "/ai5", AITerminalConfiguration.Differential); AddAnalogInputChannel("reflectedrf2Amplitude", analogIn + "/ai6", AITerminalConfiguration.Differential); AddAnalogInputChannel("rfCurrent", analogIn + "/ai7 ", AITerminalConfiguration.Differential); AddAnalogOutputChannel("phaseScramblerVoltage", aoBoard + "/ao10"); AddAnalogOutputChannel("b", aoBoard + "/ao2"); // rf rack control //AddAnalogInputChannel("rfPower", usbDAQ1 + "/ai0", AITerminalConfiguration.Rse); AddAnalogOutputChannel("rf1Attenuator", usbDAQ1 + "/ao0", 0, 5); AddAnalogOutputChannel("rf2Attenuator", usbDAQ1 + "/ao1", 0, 5); AddAnalogOutputChannel("rf1FM", usbDAQ2 + "/ao0", 0, 5); AddAnalogOutputChannel("rf2FM", usbDAQ2 + "/ao1", 0, 5); // E field control and monitoring //AddAnalogInputChannel("cPlusMonitor", usbDAQ3 + "/ai1", AITerminalConfiguration.Differential); //AddAnalogInputChannel("cMinusMonitor", usbDAQ3 + "/ai2", AITerminalConfiguration.Differential); AddAnalogInputChannel("cPlusMonitor", daqBoard + "/ai0", AITerminalConfiguration.Differential); AddAnalogInputChannel("cMinusMonitor", daqBoard + "/ai1", AITerminalConfiguration.Differential); AddAnalogOutputChannel("cPlus", usbDAQ3 + "/ao0", 0, 10); AddAnalogOutputChannel("cMinus", usbDAQ3 + "/ao1", 0, 10); // B field control //AddAnalogOutputChannel("steppingBBias", usbDAQ4 + "/ao0", 0, 5); // map the counter channels AddCounterChannel("phaseLockOscillator", counterBoard + "/ctr7"); AddCounterChannel("phaseLockReference", counterBoard + "/pfi10"); //AddCounterChannel("northLeakage", counterBoard + "/ctr0"); //AddCounterChannel("southLeakage", counterBoard + "/ctr1"); // Cavity inputs for the cavity that controls the Pump lasers AddAnalogInputChannel("PumpCavityRampVoltage", tclBoardPump + "/ai8", AITerminalConfiguration.Rse); //tick AddAnalogInputChannel("Pumpmaster", tclBoardPump + "/ai1", AITerminalConfiguration.Rse); AddAnalogInputChannel("Pumpp1", tclBoardPump + "/ai2", AITerminalConfiguration.Rse); AddAnalogInputChannel("Pumpp2", tclBoardPump + "/ai3", AITerminalConfiguration.Rse); // Lasers locked to pump cavity AddAnalogOutputChannel("KeopsysDiodeLaser", tclBoardPump + "/ao2", -4, 4); //tick AddAnalogOutputChannel("MenloPZT", tclBoardPump + "/ao0", 0, 10); //tick // Length stabilisation for pump cavity AddAnalogOutputChannel("PumpCavityLengthVoltage", tclBoardPump + "/ao1", -10, 10); //tick //TCL configuration for pump cavity TCLConfig tcl1 = new TCLConfig("Pump Cavity"); tcl1.AddLaser("MenloPZT", "Pumpp1"); tcl1.AddLaser("KeopsysDiodeLaser", "Pumpp2"); tcl1.Trigger = tclBoardPump + "/PFI0"; tcl1.Cavity = "PumpCavityRampVoltage"; tcl1.MasterLaser = "Pumpmaster"; tcl1.Ramp = "PumpCavityLengthVoltage"; tcl1.TCPChannel = 1190; tcl1.AnalogSampleRate = 61250; tcl1.DefaultScanPoints = 500; tcl1.MaximumNLMFSteps = 20; tcl1.PointsToConsiderEitherSideOfPeakInFWHMs = 2.5; tcl1.TriggerOnRisingEdge = false; tcl1.AddFSRCalibration("MenloPZT", 3.84); tcl1.AddFSRCalibration("KeopsysDiodeLaser", 3.84); tcl1.AddDefaultGain("Master", 0.3); tcl1.AddDefaultGain("MenloPZT", -0.2); tcl1.AddDefaultGain("KeopsysDiodeLaser", 4); Info.Add("PumpCavity", tcl1); Info.Add("DefaultCavity", tcl1); // Probe cavity inputs AddAnalogInputChannel("ProbeRampVoltage", tclBoardProbe + "/ai0", AITerminalConfiguration.Rse); //tick AddAnalogInputChannel("Probemaster", tclBoardProbe + "/ai1", AITerminalConfiguration.Rse); //tick AddAnalogInputChannel("Probep1", tclBoardProbe + "/ai2", AITerminalConfiguration.Rse); //tick // Lasers locked to Probe cavity AddAnalogOutputChannel("TopticaSHGPZT", tclBoardProbe + "/ao0", -4, 4); //tick AddAnalogOutputChannel("ProbeCavityLengthVoltage", tclBoardProbe + "/ao1", -10, 10); //tick // TCL configuration for Probe cavity TCLConfig tcl2 = new TCLConfig("Probe Cavity"); tcl2.AddLaser("TopticaSHGPZT", "Probep1"); tcl2.Trigger = tclBoardProbe + "/PFI0"; tcl2.Cavity = "ProbeRampVoltage"; tcl2.MasterLaser = "Probemaster"; tcl2.Ramp = "ProbeCavityLengthVoltage"; tcl2.TCPChannel = 1191; tcl2.AnalogSampleRate = 61250 / 2; tcl2.DefaultScanPoints = 250; tcl2.MaximumNLMFSteps = 20; tcl2.PointsToConsiderEitherSideOfPeakInFWHMs = 12; tcl2.AddFSRCalibration("TopticaSHGPZT", 3.84); tcl2.TriggerOnRisingEdge = false; tcl2.AddDefaultGain("Master", 0.4); tcl2.AddDefaultGain("TopticaSHGPZT", 0.04); Info.Add("ProbeCavity", tcl2); //Info.Add("DefaultCavity", tcl2); // Obsolete Laser control AddAnalogOutputChannel("probeAOM", aoBoard + "/ao19", 0, 10); AddAnalogOutputChannel("pumpAOM", aoBoard + "/ao20", 0, 10); AddAnalogOutputChannel("fibreAmpPwr", aoBoard + "/ao3"); AddAnalogOutputChannel("I2LockBias", aoBoard + "/ao5", 0, 5); //Microwave Control Channels AddAnalogOutputChannel("uWaveDCFM", aoBoard + "/ao11", -2.5, 2.5); //AddAnalogOutputChannel("uWaveMixerV", aoBoard + "/ao12", 0, 10); AddAnalogOutputChannel("pumpMixerV", aoBoard + "/ao19", 0, 5); AddAnalogOutputChannel("bottomProbeMixerV", aoBoard + "/ao24", 0, 5); AddAnalogOutputChannel("topProbeMixerV", aoBoard + "/ao25", 0, 5); //RF control Channels AddAnalogOutputChannel("VCO161Amp", aoBoard + "/ao13", 0, 10); AddAnalogOutputChannel("VCO161Freq", aoBoard + "/ao14", 0, 10); AddAnalogOutputChannel("VCO30Amp", aoBoard + "/ao15", 0, 10); AddAnalogOutputChannel("VCO30Freq", aoBoard + "/ao16", 0, 10); AddAnalogOutputChannel("VCO155Amp", aoBoard + "/ao17", 0, 10); AddAnalogOutputChannel("VCO155Freq", aoBoard + "/ao18", 0, 10); }