public virtual void reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if (active_size == l) { return; } int i, j; int nr_free = 0; for (j = active_size; j < l; j++) { G[j] = G_bar[j] + p[j]; } for (j = 0; j < active_size; j++) { if (is_free(j)) { nr_free++; } } if (2 * nr_free < active_size) { SupportVectorMachine.info("\nWARNING: using -h 0 may be faster\n"); } if (nr_free * l > 2 * active_size * (l - active_size)) { for (i = active_size; i < l; i++) { float[] Q_i = Q.get_Q(i, active_size); for (j = 0; j < active_size; j++) { if (is_free(j)) { G[i] += alpha[j] * Q_i[j]; } } } } else { for (i = 0; i < active_size; i++) { if (is_free(i)) { float[] Q_i = Q.get_Q(i, l); double alpha_i = alpha[i]; for (j = active_size; j < l; j++) { G[j] += alpha_i * Q_i[j]; } } } } }
public virtual void Solve(int l, QMatrix Q, double[] p_, sbyte[] y_, double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si, int shrinking) { this.l = l; this.Q = Q; QD = Q.get_QD(); p = (double[])p_.Clone(); y = (sbyte[])y_.Clone(); alpha = (double[])alpha_.Clone(); this.Cp = Cp; this.Cn = Cn; this.eps = eps; this.unshrink = false; // initialize alpha_status { alpha_status = new sbyte[l]; for (int i = 0; i < l; i++) { update_alpha_status(i); } } // initialize active set (for shrinking) { active_set = new int[l]; for (int i = 0; i < l; i++) { active_set[i] = i; } active_size = l; } // initialize gradient { G = new double[l]; G_bar = new double[l]; int i; for (i = 0; i < l; i++) { G[i] = p[i]; G_bar[i] = 0; } for (i = 0; i < l; i++) { if (!is_lower_bound(i)) { float[] Q_i = Q.get_Q(i, l); double alpha_i = alpha[i]; int j; for (j = 0; j < l; j++) { G[j] += alpha_i * Q_i[j]; } if (is_upper_bound(i)) { for (j = 0; j < l; j++) { G_bar[j] += get_C(i) * Q_i[j]; } } } } } // optimization step int iter = 0; int max_iter = System.Math.Max(10000000, l > int.MaxValue / 100 ? int.MaxValue : 100 * l); int counter = System.Math.Min(l, 1000) + 1; int[] working_set = new int[2]; while (iter < max_iter) { // show progress and do shrinking if (--counter == 0) { counter = System.Math.Min(l, 1000); if (shrinking != 0) { do_shrinking(); } SupportVectorMachine.info("."); } if (select_working_set(working_set) != 0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check active_size = l; SupportVectorMachine.info("*"); if (select_working_set(working_set) != 0) { break; } else { counter = 1; // do shrinking next iteration } } int i = working_set[0]; int j = working_set[1]; ++iter; // update alpha[i] and alpha[j], handle bounds carefully float[] Q_i = Q.get_Q(i, active_size); float[] Q_j = Q.get_Q(j, active_size); double C_i = get_C(i); double C_j = get_C(j); double old_alpha_i = alpha[i]; double old_alpha_j = alpha[j]; if (y[i] != y[j]) { double quad_coef = QD[i] + QD[j] + 2 * Q_i[j]; if (quad_coef <= 0) { quad_coef = 1e-12; } double delta = (-G[i] - G[j]) / quad_coef; double diff = alpha[i] - alpha[j]; alpha[i] += delta; alpha[j] += delta; if (diff > 0) { if (alpha[j] < 0) { alpha[j] = 0; alpha[i] = diff; } } else { if (alpha[i] < 0) { alpha[i] = 0; alpha[j] = -diff; } } if (diff > C_i - C_j) { if (alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = C_i - diff; } } else { if (alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = C_j + diff; } } } else { double quad_coef = QD[i] + QD[j] - 2 * Q_i[j]; if (quad_coef <= 0) { quad_coef = 1e-12; } double delta = (G[i] - G[j]) / quad_coef; double sum = alpha[i] + alpha[j]; alpha[i] -= delta; alpha[j] += delta; if (sum > C_i) { if (alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = sum - C_i; } } else { if (alpha[j] < 0) { alpha[j] = 0; alpha[i] = sum; } } if (sum > C_j) { if (alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if (alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for (int k = 0; k < active_size; k++) { G[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j; } // update alpha_status and G_bar { bool ui = is_upper_bound(i); bool uj = is_upper_bound(j); update_alpha_status(i); update_alpha_status(j); int k; if (ui != is_upper_bound(i)) { Q_i = Q.get_Q(i, l); if (ui) { for (k = 0; k < l; k++) { G_bar[k] -= C_i * Q_i[k]; } } else { for (k = 0; k < l; k++) { G_bar[k] += C_i * Q_i[k]; } } } if (uj != is_upper_bound(j)) { Q_j = Q.get_Q(j, l); if (uj) { for (k = 0; k < l; k++) { G_bar[k] -= C_j * Q_j[k]; } } else { for (k = 0; k < l; k++) { G_bar[k] += C_j * Q_j[k]; } } } } } if (iter >= max_iter) { if (active_size < l) { // reconstruct the whole gradient to calculate objective value reconstruct_gradient(); active_size = l; SupportVectorMachine.info("*"); } SupportVectorMachine.info("\nWARNING: reaching max number of iterations"); } // calculate rho si.rho = calculate_rho(); // calculate objective value { double v = 0; int i; for (i = 0; i < l; i++) { v += alpha[i] * (G[i] + p[i]); } si.obj = v / 2; } // put back the solution { for (int i = 0; i < l; i++) { alpha_[active_set[i]] = alpha[i]; } } si.upper_bound_p = Cp; si.upper_bound_n = Cn; SupportVectorMachine.info("\noptimization finished, #iter = " + iter + "\n"); }