Example #1
0
        // Stochastic RSI
        public static void CalculateStochasticRSI(out string key, StockPoints data, Dictionary<DateTime, Dictionary<string, double>> indicators, int period, out int offset, bool leverage = true)
        {
            key = string.Format("StocRSI({0})", period.ToString("00"));
            ExponentialMovingAverage gains = new ExponentialMovingAverage(period);
            ExponentialMovingAverage losses = new ExponentialMovingAverage(period);
            offset = period * 2;

            double rsi;
            double stochRSI;
            double highestRSI;
            double lowestRSI;

            Queue<double> rsiQueue = new Queue<double>();

            StockPoint previousPoint = data[0];
            int i = 0;
            foreach (StockPoint point in data.Skip(1))
            {
                if (previousPoint.Close > point.Close)
                {
                    losses.AddValue(previousPoint.Close - point.Close);
                    gains.AddValue(0);
                }
                else if (previousPoint.Close < point.Close)
                {
                    gains.AddValue(point.Close - previousPoint.Close);
                    losses.AddValue(0);
                }

                if (i < period - 1)
                {
                    i++;
                }
                else
                {
                    rsi = 100 - (100 / (1 + (gains.MovingAverage / losses.MovingAverage)));

                    rsiQueue.Enqueue(rsi);
                    if (rsiQueue.Count > period)
                    {
                        rsiQueue.Dequeue();
                    }

                    if (rsiQueue.Count == period)
                    {
                        highestRSI = rsiQueue.Max();
                        lowestRSI = rsiQueue.Min();

                        stochRSI = (rsi - lowestRSI) / (highestRSI - lowestRSI) * (leverage ? 100 : 1);

                        AddValue(point.PointDateTime, key, stochRSI, indicators);
                    }
                }

                previousPoint = point;
            }
        }
Example #2
0
        // RSI
        /// <summary>
        /// Calculates the Relative Strength Index and fills indicators with the data needed to graph it.
        /// </summary>
        /// <param name="key">Name of the set to put in the graph key</param>
        /// <param name="data">StockPoints to calculate the Relative Strength Index with.</param>
        /// <param name="indicators">The mfvvalues needed to graph the RSI.</param>
        /// <param name="period">The number of days gained/lost to consider.</param>
        /// <param name="offset">Where to start the graph.</param>
        public static void CalculateRsi(out string key, StockPoints data, Dictionary<DateTime, Dictionary<string, double>> indicators, int period, out int offset)
        {
            key = "RSI(" + period.ToString("00") + ")";
            ExponentialMovingAverage gains = new ExponentialMovingAverage(period);
            ExponentialMovingAverage losses = new ExponentialMovingAverage(period);
            offset = period;
            int i = 0;
            StockPoint previousPoint = data[0];
            foreach (StockPoint point in data.Skip(1))
            {
                if (previousPoint.Close > point.Close)
                {
                    losses.AddValue(previousPoint.Close - point.Close);
                    gains.AddValue(0);
                }
                else if (previousPoint.Close < point.Close)
                {
                    gains.AddValue(point.Close - previousPoint.Close);
                    losses.AddValue(0);
                }

                if (i < period - 1)
                {
                    i++;
                }
                else
                {
                    double rsi = 100 - (100 / (1 + (gains.MovingAverage / losses.MovingAverage)));
                    AddValue(point.PointDateTime, key, rsi, indicators);
                }

                previousPoint = point;
            }
        }
Example #3
0
        // Full Stochastic
        /// <summary>
        /// Calculates the Full Stochastic Oscillator and fills indicators with the data needed to graph it.
        /// </summary>
        /// <param name="key">Name of the first set to put in the graph key</param>
        /// <param name="key2">Name of the second set to put in the graph key</param>
        /// <param name="data">StockPoints to calculate the Full Stochastic with.</param>
        /// <param name="indicators">The mfvvalues needed to graph the Full Stochastic.</param>
        /// <param name="period1">The number of period to calculate Fast Stochastic.</param>
        /// <param name="period2">The number of period to calculate SMA of Fast Stochastic.</param>
        /// <param name="period3">The number of period to calculate SMA of calculated SMA of Fast Stochastic.</param>
        /// <param name="offset">Where to start the graph.</param>
        public static void CalculateStochastic(out string key, out string key2, StockPoints data, Dictionary<DateTime, Dictionary<string, double>> indicators, int period1, int period2, int period3, out int offset)
        {
            key = string.Format("Full STO %K({0}:{1})", period1.ToString("00"), period2.ToString("00"));
            key2 = string.Format("Full STO %D({0})", period3.ToString("00"));

            offset = period1 - 1;

            SimpleMovingAverage ksma = new SimpleMovingAverage(period2);
            SimpleMovingAverage dsma = new SimpleMovingAverage(period3);

            // lowest among the lowest for the chosen period
            double lowestLow;

            // highest among the highest for the chosen period
            double highestHigh;

            // Lowest Low = lowest low for the look-back period
            // Highest High = highest high for the look-back period
            // fastk = (Current Close - Lowest Low)/(Highest High - Lowest Low) * 100
            double fastk;

            // fullk smoothed with X-period SMA
            double fullk;

            // X-period SMA of Full fullk
            double fulld;

            int i = 0;
            // loop through each stockpoint skipping the
            foreach (StockPoint point in data)
            {
                lowestLow = data.Skip(data.IndexOf(point) - (period1 - 1)).Take(period1).OrderBy(sp => sp.Low).FirstOrDefault().Low;
                highestHigh = data.Skip(data.IndexOf(point) - (period1 - 1)).Take(period1).OrderByDescending(sp => sp.High).FirstOrDefault().High;

                fastk = (point.Close - lowestLow) / (highestHigh - lowestLow == 0 ? 1 : highestHigh - lowestLow) * 100;
                ksma.AddValue(fastk);
                fullk = ksma.MovingAverage();

                dsma.AddValue(fullk);
                fulld = dsma.MovingAverage();

                if (i < period1 - 1)
                {
                    i++;
                }
                else
                {
                    AddValue(point.PointDateTime, key, fullk, indicators);
                    AddValue(point.PointDateTime, key2, fulld, indicators);
                }
            }
        }
Example #4
0
        // Money Flow Index
        public static void CalculateMFI(out string key, StockPoints data, Dictionary<DateTime, Dictionary<string, double>> indicators, int period, out int offset)
        {
            key = string.Format("MFI({0})", period.ToString("00"));
            offset = period;

            // Typical Price = (High + Low + Close)/3
            double typicalPrice;

            // Raw Money Flow = Typical Price x Volume
            double rawMoneyFlow;

            // Money Flow Ratio = (x-period Positive Money Flow)/(x-period Negative Money Flow)
            double moneyFlowRatio;

            // Money Flow Index = 100 - 100/(1 + Money Flow Ratio)
            double moneyFlowIndex;

            double positiveMoneyFlow = 0D;
            double negativeMoneyFLow = 0D;

            Queue<double> moneyFlow = new Queue<double>();
            double previousTipycalPrice = (data[0].Low + data[0].High + data[0].Close) / 3;

            int i = 0;
            foreach (StockPoint point in data.Skip(1))
            {
                typicalPrice = (point.Low + point.High + point.Close) / 3;
                rawMoneyFlow = typicalPrice * point.Volume;
                moneyFlow.Enqueue(rawMoneyFlow * (typicalPrice >= previousTipycalPrice ? 1 : -1));

                if(moneyFlow.Count > period)
                {
                    moneyFlow.Dequeue();
                }

                if (i < period - 1)
                {
                    i++;
                }
                else
                {
                    positiveMoneyFlow = moneyFlow.Where(v => v >= 0).Sum();
                    negativeMoneyFLow = Math.Abs(moneyFlow.Where(v => v < 0).Sum());

                    moneyFlowRatio = positiveMoneyFlow / negativeMoneyFLow;
                    moneyFlowIndex = 100 - (100 / (1 + moneyFlowRatio));

                    AddValue(point.PointDateTime, key, moneyFlowIndex, indicators);
                }

                previousTipycalPrice = typicalPrice;
            }
        }