Example #1
0
			public override TableFactor Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
			{
				int numNeighbors = sourceOfRandomness.NextInt(1, 3);
				int[] neighbors = new int[numNeighbors];
				int[] dimensions = new int[numNeighbors];
				ICollection<int> usedNeighbors = new HashSet<int>();
				for (int i = 0; i < neighbors.Length; i++)
				{
					while (true)
					{
						int neighbor = sourceOfRandomness.NextInt(0, 3);
						if (!usedNeighbors.Contains(neighbor))
						{
							usedNeighbors.Add(neighbor);
							neighbors[i] = neighbor;
							dimensions[i] = variableSizes[neighbor];
							break;
						}
					}
				}
				// Make sure we get some all-0 factor tables
				double multiple = sourceOfRandomness.NextDouble();
				TableFactor factor = new TableFactor(neighbors, dimensions);
				foreach (int[] assignment in factor)
				{
					factor.SetAssignmentValue(assignment, multiple * sourceOfRandomness.NextDouble());
				}
				return factor;
			}
            private IDictionary <string, string> GenerateMetaData(SourceOfRandomness sourceOfRandomness, IDictionary <string, string> metaData)
            {
                int numPairs = sourceOfRandomness.NextInt(9);

                for (int i = 0; i < numPairs; i++)
                {
                    int key   = sourceOfRandomness.NextInt();
                    int value = sourceOfRandomness.NextInt();
                    metaData["key:" + key] = "value:" + value;
                }
                return(metaData);
            }
Example #3
0
            public override NDArrayTest.NDArrayWithGold <double> Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                NDArrayTest.NDArrayWithGold <double> testPair = new NDArrayTest.NDArrayWithGold <double>();
                int numDimensions = sourceOfRandomness.NextInt(1, 5);

                int[] dimensions = new int[numDimensions];
                for (int i = 0; i < dimensions.Length; i++)
                {
                    dimensions[i] = sourceOfRandomness.NextInt(1, 4);
                }
                testPair.array = new NDArray <double>(dimensions);
                RecursivelyFillArray(new List <int>(), testPair, sourceOfRandomness);
                return(testPair);
            }
Example #4
0
            public override ConcatVectorTest.DenseTestVector Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                int length = sourceOfRandomness.NextInt(10);

                double[][] trueValues = new double[length][];
                bool[]     sparse     = new bool[length];
                int[]      sizes      = new int[length];
                // Generate sizes in advance, so we can pass the clues on to the constructor for the multivector
                for (int i = 0; i < length; i++)
                {
                    bool isSparse = sourceOfRandomness.NextBoolean();
                    sparse[i] = isSparse;
                    if (isSparse)
                    {
                        sizes[i] = -1;
                    }
                    else
                    {
                        int componentLength = sourceOfRandomness.NextInt(SparseVectorLength);
                        sizes[i] = componentLength;
                    }
                }
                ConcatVector mv = new ConcatVector(length);

                for (int i_1 = 0; i_1 < length; i_1++)
                {
                    if (sparse[i_1])
                    {
                        trueValues[i_1] = new double[SparseVectorLength];
                        int    sparseIndex = sourceOfRandomness.NextInt(SparseVectorLength);
                        double sparseValue = sourceOfRandomness.NextDouble();
                        trueValues[i_1][sparseIndex] = sparseValue;
                        mv.SetSparseComponent(i_1, sparseIndex, sparseValue);
                    }
                    else
                    {
                        trueValues[i_1] = new double[sizes[i_1]];
                        // Ensure we have some null components in our generated vector
                        if (sizes[i_1] > 0)
                        {
                            for (int j = 0; j < sizes[i_1]; j++)
                            {
                                trueValues[i_1][j] = sourceOfRandomness.NextDouble();
                            }
                            mv.SetDenseComponent(i_1, trueValues[i_1]);
                        }
                    }
                }
                return(new ConcatVectorTest.DenseTestVector(trueValues, mv));
            }
Example #5
0
            public override IDictionary <int, int> Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                int numFeatures = sourceOfRandomness.NextInt(1, 15);
                IDictionary <int, int> featureMap = new Dictionary <int, int>();

                for (int i = 0; i < numFeatures; i++)
                {
                    int featureValue = sourceOfRandomness.NextInt(20);
                    while (featureMap.Contains(featureValue))
                    {
                        featureValue = sourceOfRandomness.NextInt(20);
                    }
                    featureMap[featureValue] = sourceOfRandomness.NextInt(2);
                }
                return(featureMap);
            }
Example #6
0
            public override GraphicalModel Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                GraphicalModel model = new GraphicalModel();

                // Create the variables and factors
                int[] variableSizes = new int[20];
                for (int i = 0; i < 20; i++)
                {
                    variableSizes[i] = sourceOfRandomness.NextInt(1, 5);
                }
                int numFactors = sourceOfRandomness.NextInt(12);

                for (int i_1 = 0; i_1 < numFactors; i_1++)
                {
                    int[] neighbors     = new int[sourceOfRandomness.NextInt(1, 3)];
                    int[] neighborSizes = new int[neighbors.Length];
                    for (int j = 0; j < neighbors.Length; j++)
                    {
                        neighbors[j]     = sourceOfRandomness.NextInt(20);
                        neighborSizes[j] = variableSizes[neighbors[j]];
                    }
                    ConcatVectorTable table = new ConcatVectorTable(neighborSizes);
                    foreach (int[] assignment in table)
                    {
                        int numComponents = sourceOfRandomness.NextInt(7);
                        // Generate a vector
                        ConcatVector v = new ConcatVector(numComponents);
                        for (int x = 0; x < numComponents; x++)
                        {
                            if (sourceOfRandomness.NextBoolean())
                            {
                                v.SetSparseComponent(x, sourceOfRandomness.NextInt(32), sourceOfRandomness.NextDouble());
                            }
                            else
                            {
                                double[] val = new double[sourceOfRandomness.NextInt(12)];
                                for (int y = 0; y < val.Length; y++)
                                {
                                    val[y] = sourceOfRandomness.NextDouble();
                                }
                                v.SetDenseComponent(x, val);
                            }
                        }
                        // set vec in table
                        table.SetAssignmentValue(assignment, null);
                    }
                    model.AddFactor(table, neighbors);
                }
                // Add metadata to the variables, factors, and model
                GenerateMetaData(sourceOfRandomness, model.GetModelMetaDataByReference());
                for (int i_2 = 0; i_2 < 20; i_2++)
                {
                    GenerateMetaData(sourceOfRandomness, model.GetVariableMetaDataByReference(i_2));
                }
                foreach (GraphicalModel.Factor factor in model.factors)
                {
                    GenerateMetaData(sourceOfRandomness, factor.GetMetaDataByReference());
                }
                return(model);
            }
            public override TableFactorTest.PartiallyObservedConstructorData Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                int len = sourceOfRandomness.NextInt(1, 4);
                ICollection <int> taken = new HashSet <int>();

                int[] neighborIndices = new int[len];
                int[] dimensions      = new int[len];
                int[] observations    = new int[len];
                int   numObserved     = 0;

                for (int i = 0; i < len; i++)
                {
                    int j = sourceOfRandomness.NextInt(8);
                    while (taken.Contains(j))
                    {
                        j = sourceOfRandomness.NextInt(8);
                    }
                    taken.Add(j);
                    neighborIndices[i] = j;
                    dimensions[i]      = sourceOfRandomness.NextInt(1, 3);
                    if (sourceOfRandomness.NextBoolean() && numObserved + 1 < dimensions.Length)
                    {
                        observations[i] = sourceOfRandomness.NextInt(dimensions[i]);
                        numObserved++;
                    }
                    else
                    {
                        observations[i] = -1;
                    }
                }
                ConcatVectorTable t = new ConcatVectorTable(dimensions);

                TableFactorTest.ConcatVectorGenerator gen = new TableFactorTest.ConcatVectorGenerator(typeof(ConcatVector));
                foreach (int[] assn in t)
                {
                    ConcatVector vec = gen.Generate(sourceOfRandomness, generationStatus);
                    t.SetAssignmentValue(assn, null);
                }
                TableFactorTest.PartiallyObservedConstructorData data = new TableFactorTest.PartiallyObservedConstructorData();
                data.factor       = new GraphicalModel.Factor(t, neighborIndices);
                data.observations = observations;
                return(data);
            }
            public override ModelBatch Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                int        length = sourceOfRandomness.NextInt(0, 50);
                ModelBatch batch  = new ModelBatch();

                for (int i = 0; i < length; i++)
                {
                    batch.Add(modelGenerator.Generate(sourceOfRandomness, generationStatus));
                }
                return(batch);
            }
            /////////////////////////////////////////////////////////////////////////////
            //
            // A copy of these generators exists in GradientSourceTest in the learning module. If any bug fixes are made here,
            // remember to update that code as well by copy-paste.
            //
            /////////////////////////////////////////////////////////////////////////////
            public override ConcatVector Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                ConcatVector v = new ConcatVector(ConcatVecComponents);

                for (int x = 0; x < ConcatVecComponents; x++)
                {
                    if (sourceOfRandomness.NextBoolean())
                    {
                        v.SetSparseComponent(x, sourceOfRandomness.NextInt(ConcatVecComponentLength), sourceOfRandomness.NextDouble());
                    }
                    else
                    {
                        double[] val = new double[sourceOfRandomness.NextInt(ConcatVecComponentLength)];
                        for (int y = 0; y < val.Length; y++)
                        {
                            val[y] = sourceOfRandomness.NextDouble();
                        }
                        v.SetDenseComponent(x, val);
                    }
                }
                return(v);
            }
            public override GraphicalModel Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                GraphicalModel model = new GraphicalModel();

                // Create the variables and factors. These are deliberately tiny so that the brute force approach is tractable
                int[] variableSizes = new int[8];
                for (int i = 0; i < variableSizes.Length; i++)
                {
                    variableSizes[i] = sourceOfRandomness.NextInt(1, 3);
                }
                // Traverse in a randomized BFS to ensure the generated graph is a tree
                GenerateCliques(variableSizes, new List <int>(), new HashSet <int>(), model, sourceOfRandomness);
                // Add metadata to the variables, factors, and model
                GenerateMetaData(sourceOfRandomness, model.GetModelMetaDataByReference());
                for (int i_1 = 0; i_1 < 20; i_1++)
                {
                    GenerateMetaData(sourceOfRandomness, model.GetVariableMetaDataByReference(i_1));
                }
                foreach (GraphicalModel.Factor factor in model.factors)
                {
                    GenerateMetaData(sourceOfRandomness, factor.GetMetaDataByReference());
                }
                // Observe a few of the variables
                foreach (GraphicalModel.Factor f in model.factors)
                {
                    for (int i_2 = 0; i_2 < f.neigborIndices.Length; i_2++)
                    {
                        if (sourceOfRandomness.NextDouble() > 0.8)
                        {
                            int obs = sourceOfRandomness.NextInt(f.featuresTable.GetDimensions()[i_2]);
                            model.GetVariableMetaDataByReference(f.neigborIndices[i_2])[CliqueTree.VariableObservedValue] = string.Empty + obs;
                        }
                    }
                }
                return(model);
            }
 public override GraphicalModel[] Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
 {
     GraphicalModel[] dataset = new GraphicalModel[sourceOfRandomness.NextInt(1, 10)];
     for (int i = 0; i < dataset.Length; i++)
     {
         dataset[i] = modelGenerator.Generate(sourceOfRandomness, generationStatus);
         foreach (GraphicalModel.Factor f in dataset[i].factors)
         {
             for (int j = 0; j < f.neigborIndices.Length; j++)
             {
                 int n   = f.neigborIndices[j];
                 int dim = f.featuresTable.GetDimensions()[j];
                 dataset[i].GetVariableMetaDataByReference(n)[LogLikelihoodDifferentiableFunction.VariableTrainingValue] = string.Empty + sourceOfRandomness.NextInt(dim);
             }
         }
     }
     return(dataset);
 }
            public override ConcatVector[][][] Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                int l = sourceOfRandomness.NextInt(10) + 1;
                int m = sourceOfRandomness.NextInt(10) + 1;
                int n = sourceOfRandomness.NextInt(10) + 1;

                ConcatVector[][][] factor3 = new ConcatVector[l][][];
                for (int i = 0; i < factor3.Length; i++)
                {
                    for (int j = 0; j < factor3[0].Length; j++)
                    {
                        for (int k = 0; k < factor3[0][0].Length; k++)
                        {
                            int          numComponents = sourceOfRandomness.NextInt(7);
                            ConcatVector v             = new ConcatVector(numComponents);
                            for (int x = 0; x < numComponents; x++)
                            {
                                if (sourceOfRandomness.NextBoolean())
                                {
                                    v.SetSparseComponent(x, sourceOfRandomness.NextInt(32), sourceOfRandomness.NextDouble());
                                }
                                else
                                {
                                    double[] val = new double[sourceOfRandomness.NextInt(12)];
                                    for (int y = 0; y < val.Length; y++)
                                    {
                                        val[y] = sourceOfRandomness.NextDouble();
                                    }
                                    v.SetDenseComponent(x, val);
                                }
                            }
                            factor3[i][j][k] = v;
                        }
                    }
                }
                return(factor3);
            }
            private void GenerateCliques(int[] variableSizes, IList <int> startSet, ICollection <int> alreadyRepresented, GraphicalModel model, SourceOfRandomness randomness)
            {
                if (alreadyRepresented.Count == variableSizes.Length)
                {
                    return;
                }
                // Generate the clique variable set
                IList <int> cliqueContents = new List <int>();

                Sharpen.Collections.AddAll(cliqueContents, startSet);
                Sharpen.Collections.AddAll(alreadyRepresented, startSet);
                while (true)
                {
                    if (alreadyRepresented.Count == variableSizes.Length)
                    {
                        break;
                    }
                    if (cliqueContents.Count == 0 || randomness.NextDouble(0, 1) < 0.7)
                    {
                        int gen;
                        do
                        {
                            gen = randomness.NextInt(variableSizes.Length);
                        }while (alreadyRepresented.Contains(gen));
                        alreadyRepresented.Add(gen);
                        cliqueContents.Add(gen);
                    }
                    else
                    {
                        break;
                    }
                }
                // Create the actual table
                int[] neighbors     = new int[cliqueContents.Count];
                int[] neighborSizes = new int[neighbors.Length];
                for (int j = 0; j < neighbors.Length; j++)
                {
                    neighbors[j]     = cliqueContents[j];
                    neighborSizes[j] = variableSizes[neighbors[j]];
                }
                ConcatVectorTable table = new ConcatVectorTable(neighborSizes);

                foreach (int[] assignment in table)
                {
                    // Generate a vector
                    ConcatVector v = new ConcatVector(ConcatVecComponents);
                    for (int x = 0; x < ConcatVecComponents; x++)
                    {
                        if (randomness.NextBoolean())
                        {
                            v.SetSparseComponent(x, randomness.NextInt(32), randomness.NextDouble());
                        }
                        else
                        {
                            double[] val = new double[randomness.NextInt(12)];
                            for (int y = 0; y < val.Length; y++)
                            {
                                val[y] = randomness.NextDouble();
                            }
                            v.SetDenseComponent(x, val);
                        }
                    }
                    // set vec in table
                    table.SetAssignmentValue(assignment, null);
                }
                model.AddFactor(table, neighbors);
                // Pick the number of children
                IList <int> availableVariables = new List <int>();

                Sharpen.Collections.AddAll(availableVariables, cliqueContents);
                availableVariables.RemoveAll(startSet);
                int numChildren = randomness.NextInt(0, availableVariables.Count);

                if (numChildren == 0)
                {
                    return;
                }
                IList <IList <int> > children = new List <IList <int> >();

                for (int i = 0; i < numChildren; i++)
                {
                    children.Add(new List <int>());
                }
                // divide up the shared variables across the children
                int cursor = 0;

                while (true)
                {
                    if (availableVariables.Count == 0)
                    {
                        break;
                    }
                    if (children[cursor].Count == 0 || randomness.NextBoolean())
                    {
                        int gen = randomness.NextInt(availableVariables.Count);
                        children[cursor].Add(availableVariables[gen]);
                        availableVariables.Remove(availableVariables[gen]);
                    }
                    else
                    {
                        break;
                    }
                    cursor = (cursor + 1) % numChildren;
                }
                foreach (IList <int> shared1 in children)
                {
                    foreach (int i_1 in shared1)
                    {
                        foreach (IList <int> shared2 in children)
                        {
                            System.Diagnostics.Debug.Assert((shared1 == shared2 || !shared2.Contains(i_1)));
                        }
                    }
                }
                foreach (IList <int> shared in children)
                {
                    if (shared.Count > 0)
                    {
                        GenerateCliques(variableSizes, shared, alreadyRepresented, model, randomness);
                    }
                }
            }
            public override GraphicalModel Generate(SourceOfRandomness sourceOfRandomness, IGenerationStatus generationStatus)
            {
                GraphicalModel model = new GraphicalModel();

                // Create the variables and factors. These are deliberately tiny so that the brute force approach is tractable
                int[] variableSizes = new int[8];
                for (int i = 0; i < variableSizes.Length; i++)
                {
                    variableSizes[i] = sourceOfRandomness.NextInt(1, 3);
                }
                // Traverse in a randomized BFS to ensure the generated graph is a tree
                if (sourceOfRandomness.NextBoolean())
                {
                    GenerateCliques(variableSizes, new List <int>(), new HashSet <int>(), model, sourceOfRandomness);
                }
                else
                {
                    // Or generate a linear chain CRF, because our random BFS doesn't generate these very often, and they're very
                    // common in practice, so worth testing densely
                    for (int i_1 = 0; i_1 < variableSizes.Length; i_1++)
                    {
                        // Add unary factor
                        GraphicalModel.Factor unary = model.AddFactor(new int[] { i_1 }, new int[] { variableSizes[i_1] }, null);
                        // "Cook" the randomly generated feature vector thunks, so they don't change as we run the system
                        foreach (int[] assignment in unary.featuresTable)
                        {
                            ConcatVector randomlyGenerated = unary.featuresTable.GetAssignmentValue(assignment).Get();
                            unary.featuresTable.SetAssignmentValue(assignment, null);
                        }
                        // Add binary factor
                        if (i_1 < variableSizes.Length - 1)
                        {
                            GraphicalModel.Factor binary = model.AddFactor(new int[] { i_1, i_1 + 1 }, new int[] { variableSizes[i_1], variableSizes[i_1 + 1] }, null);
                            // "Cook" the randomly generated feature vector thunks, so they don't change as we run the system
                            foreach (int[] assignment_1 in binary.featuresTable)
                            {
                                ConcatVector randomlyGenerated = binary.featuresTable.GetAssignmentValue(assignment_1).Get();
                                binary.featuresTable.SetAssignmentValue(assignment_1, null);
                            }
                        }
                    }
                }
                // Add metadata to the variables, factors, and model
                GenerateMetaData(sourceOfRandomness, model.GetModelMetaDataByReference());
                for (int i_2 = 0; i_2 < 20; i_2++)
                {
                    GenerateMetaData(sourceOfRandomness, model.GetVariableMetaDataByReference(i_2));
                }
                foreach (GraphicalModel.Factor factor in model.factors)
                {
                    GenerateMetaData(sourceOfRandomness, factor.GetMetaDataByReference());
                }
                // Observe a few of the variables
                foreach (GraphicalModel.Factor f in model.factors)
                {
                    for (int i_1 = 0; i_1 < f.neigborIndices.Length; i_1++)
                    {
                        if (sourceOfRandomness.NextDouble() > 0.8)
                        {
                            int obs = sourceOfRandomness.NextInt(f.featuresTable.GetDimensions()[i_1]);
                            model.GetVariableMetaDataByReference(f.neigborIndices[i_1])[CliqueTree.VariableObservedValue] = string.Empty + obs;
                        }
                    }
                }
                return(model);
            }