public void TestAntiSymmetricity() { var matrix = new SkewSymmetricSparseMatrix(5); matrix[1, 3] = 1.0f; Assert.AreEqual(-1.0f, matrix[3, 1]); }
[Test()] public void TestCreateMatrix() { var matrix1 = new SkewSymmetricSparseMatrix(5); var matrix2 = matrix1.CreateMatrix(4, 4); Assert.IsInstanceOf(matrix1.GetType(), matrix2); }
[Test()] public void TestAntiSymmetricity() { var matrix = new SkewSymmetricSparseMatrix(5); matrix[1, 3] = 1.0f; Assert.AreEqual(-1.0f, matrix[3, 1]); }
public void TestNonEmptyEntryIDs() { var matrix = new SkewSymmetricSparseMatrix(5); Assert.AreEqual(0, matrix.NonEmptyEntryIDs.Count); matrix[3, 1] = 1.0f; Assert.AreEqual(2, matrix.NonEmptyEntryIDs.Count); }
/// void InitModel() { // create data structure diff_matrix_like = new SkewSymmetricSparseMatrix(MaxItemID + 1); freq_matrix_like = new SymmetricSparseMatrix <int>(MaxItemID + 1); diff_matrix_dislike = new SkewSymmetricSparseMatrix(MaxItemID + 1); freq_matrix_dislike = new SymmetricSparseMatrix <int>(MaxItemID + 1); user_average = new double[MaxUserID + 1]; }
[Test()] public void TestNonEmptyEntryIDs() { var matrix = new SkewSymmetricSparseMatrix(5); Assert.AreEqual(0, matrix.NonEmptyEntryIDs.Count); matrix[3, 1] = 1.0f; Assert.AreEqual(2, matrix.NonEmptyEntryIDs.Count); }
public void TestIsSymmetric() { var matrix = new SkewSymmetricSparseMatrix(5); Assert.IsTrue(matrix.IsSymmetric); matrix[1, 3] = 1.0f; Assert.IsFalse(matrix.IsSymmetric); matrix[1, 3] = 0f; Assert.IsTrue(matrix.IsSymmetric); }
public void TestGetSet() { var matrix = new SkewSymmetricSparseMatrix(5); matrix[1, 3] = 1.0f; Assert.AreEqual( 1.0f, matrix[1, 3]); Assert.AreEqual(-1.0f, matrix[3, 1]); matrix[4, 1] = -2.0f; Assert.AreEqual(-2.0f, matrix[4, 1]); Assert.AreEqual( 2.0f, matrix[1, 4]); }
[Test()] public void TestIsSymmetric() { var matrix = new SkewSymmetricSparseMatrix(5); Assert.IsTrue(matrix.IsSymmetric); matrix[1, 3] = 1.0f; Assert.IsFalse(matrix.IsSymmetric); matrix[1, 3] = 0f; Assert.IsTrue(matrix.IsSymmetric); }
[Test()] public void TestGetSet() { var matrix = new SkewSymmetricSparseMatrix(5); matrix[1, 3] = 1.0f; Assert.AreEqual(1.0f, matrix[1, 3]); Assert.AreEqual(-1.0f, matrix[3, 1]); matrix[4, 1] = -2.0f; Assert.AreEqual(-2.0f, matrix[4, 1]); Assert.AreEqual(2.0f, matrix[1, 4]); }
[Test()] public void TestNumberOfNonEmptyEntries() { var matrix = new SkewSymmetricSparseMatrix(5); Assert.AreEqual(0, matrix.NumberOfNonEmptyEntries); matrix[3, 1] = 1.0f; Assert.AreEqual(2, matrix.NumberOfNonEmptyEntries); matrix[3, 1] = 2.0f; Assert.AreEqual(2, matrix.NumberOfNonEmptyEntries); matrix[3, 3] = 1.0f; Assert.AreEqual(3, matrix.NumberOfNonEmptyEntries); }
/// public override void LoadModel(string file) { InitModel(); using ( StreamReader reader = Recommender.GetReader(file, this.GetType()) ) { var global_average = double.Parse(reader.ReadLine(), CultureInfo.InvariantCulture); var diff_matrix = (SkewSymmetricSparseMatrix) IMatrixUtils.ReadMatrix(reader, this.diff_matrix); // TODO take symmetric matrix into account for smaller model files var freq_matrix = (SymmetricSparseMatrix<int>) IMatrixUtils.ReadMatrix(reader, this.freq_matrix); // TODO take anti-symmetric matrix into account for smaller model files // assign new model this.global_average = global_average; this.diff_matrix = diff_matrix; this.freq_matrix = freq_matrix; } }
/// public override void LoadModel(string file) { InitModel(); using (StreamReader reader = Recommender.GetReader(file, this.GetType())) { var global_average = double.Parse(reader.ReadLine(), CultureInfo.InvariantCulture); var diff_matrix = (SkewSymmetricSparseMatrix)IMatrixUtils.ReadMatrix(reader, this.diff_matrix); // TODO take symmetric matrix into account for smaller model files var freq_matrix = (SymmetricSparseMatrix <int>)IMatrixUtils.ReadMatrix(reader, this.freq_matrix); // TODO take anti-symmetric matrix into account for smaller model files // assign new model this.global_average = global_average; this.diff_matrix = diff_matrix; this.freq_matrix = freq_matrix; } }
/// public override void LoadModel(string file) { InitModel(); using ( StreamReader reader = Model.GetReader(file, this.GetType()) ) { var global_average = float.Parse(reader.ReadLine(), CultureInfo.InvariantCulture); var diff_matrix = (SkewSymmetricSparseMatrix) reader.ReadMatrix(this.diff_matrix); var freq_matrix = (SymmetricSparseMatrix<int>) reader.ReadMatrix(this.freq_matrix); // assign new model this.global_average = global_average; this.diff_matrix = diff_matrix; this.freq_matrix = freq_matrix; } }
/// public override void LoadModel(string file) { InitModel(); using (StreamReader reader = Model.GetReader(file, this.GetType())) { var global_average = float.Parse(reader.ReadLine(), CultureInfo.InvariantCulture); var diff_matrix = (SkewSymmetricSparseMatrix)reader.ReadMatrix(this.diff_matrix); var freq_matrix = (SymmetricSparseMatrix <int>)reader.ReadMatrix(this.freq_matrix); // assign new model this.global_average = global_average; this.diff_matrix = diff_matrix; this.freq_matrix = freq_matrix; } }
/// public override void LoadModel(string file) { InitModel(); using (StreamReader reader = Recommender.GetReader(file, this.GetType())) { var global_average = double.Parse(reader.ReadLine(), CultureInfo.InvariantCulture); var diff_matrix_like = (SkewSymmetricSparseMatrix)IMatrixUtils.ReadMatrix(reader, this.diff_matrix_like); var freq_matrix_like = (SymmetricSparseMatrix <int>)IMatrixUtils.ReadMatrix(reader, this.freq_matrix_like); var diff_matrix_dislike = (SkewSymmetricSparseMatrix)IMatrixUtils.ReadMatrix(reader, this.diff_matrix_dislike); var freq_matrix_dislike = (SymmetricSparseMatrix <int>)IMatrixUtils.ReadMatrix(reader, this.freq_matrix_dislike); var user_average = VectorUtils.ReadVector(reader); // assign new model this.global_average = global_average; this.diff_matrix_like = diff_matrix_like; this.freq_matrix_like = freq_matrix_like; this.diff_matrix_dislike = diff_matrix_dislike; this.freq_matrix_dislike = freq_matrix_dislike; this.user_average = user_average; } }
public void TestNumberOfNonEmptyEntries() { var matrix = new SkewSymmetricSparseMatrix(5); Assert.AreEqual(0, matrix.NumberOfNonEmptyEntries); matrix[3, 1] = 1.0f; Assert.AreEqual(2, matrix.NumberOfNonEmptyEntries); matrix[3, 1] = 2.0f; Assert.AreEqual(2, matrix.NumberOfNonEmptyEntries); matrix[3, 3] = 0f; Assert.AreEqual(2, matrix.NumberOfNonEmptyEntries); }
void InitModel() { diff_matrix = new SkewSymmetricSparseMatrix(MaxItemID + 1); freq_matrix = new SymmetricSparseMatrix<int>(MaxItemID + 1); }
void InitModel() { diff_matrix = new SkewSymmetricSparseMatrix(MaxItemID + 1); freq_matrix = new SymmetricSparseMatrix <int>(MaxItemID + 1); }
[Test()] public void TestNumberOfColumns() { var matrix = new SkewSymmetricSparseMatrix(3); Assert.AreEqual(3, matrix.NumberOfColumns); }
/// void InitModel() { // create data structure diff_matrix_like = new SkewSymmetricSparseMatrix(MaxItemID + 1); freq_matrix_like = new SymmetricSparseMatrix<int>(MaxItemID + 1); diff_matrix_dislike = new SkewSymmetricSparseMatrix(MaxItemID + 1); freq_matrix_dislike = new SymmetricSparseMatrix<int>(MaxItemID + 1); user_average = new double[MaxUserID + 1]; }
public void TestCreateMatrix() { var matrix1 = new SkewSymmetricSparseMatrix(5); var matrix2 = matrix1.CreateMatrix(4, 4); Assert.IsInstanceOfType(matrix1.GetType(), matrix2); }
/// public override void LoadModel(string file) { InitModel(); using ( StreamReader reader = Recommender.GetReader(file, this.GetType()) ) { var global_average = double.Parse(reader.ReadLine(), CultureInfo.InvariantCulture); var diff_matrix_like = (SkewSymmetricSparseMatrix) IMatrixUtils.ReadMatrix(reader, this.diff_matrix_like); var freq_matrix_like = (SymmetricSparseMatrix<int>) IMatrixUtils.ReadMatrix(reader, this.freq_matrix_like); var diff_matrix_dislike = (SkewSymmetricSparseMatrix) IMatrixUtils.ReadMatrix(reader, this.diff_matrix_dislike); var freq_matrix_dislike = (SymmetricSparseMatrix<int>) IMatrixUtils.ReadMatrix(reader, this.freq_matrix_dislike); var user_average = VectorUtils.ReadVector(reader); // assign new model this.global_average = global_average; this.diff_matrix_like = diff_matrix_like; this.freq_matrix_like = freq_matrix_like; this.diff_matrix_dislike = diff_matrix_dislike; this.freq_matrix_dislike = freq_matrix_dislike; this.user_average = user_average; } }
public void TestNumberOfRows() { var matrix = new SkewSymmetricSparseMatrix(3); Assert.AreEqual(3, matrix.NumberOfRows); }