Example #1
0
        public List <Suggestion> GetSuggest(UserBehavior db, long userId)
        {
            IRater    rater    = new SimpleRater();
            IComparer comparer = new CorrelationUserComparer();

            recommender = new ItemCollaborativeFilterRecommender(comparer, rater, 50);
            recommender.Train(db);

            var suggestion = recommender.GetSuggestions(userId, 500);

            return(suggestion);
        }
        public static TestResults Test(this IRecommender classifier, UserBehaviorDatabase db, int numSuggestions)
        {
            // We're only using the ratings to check for existence of a rating, so we can use a simple rater for everything
            SimpleRater             rater   = new SimpleRater();
            UserBehaviorTransformer ubt     = new UserBehaviorTransformer(db);
            UserArticleRatingsTable ratings = ubt.GetUserArticleRatingsTable(rater);

            int    correctUsers     = 0;
            double averagePrecision = 0.0;
            double averageRecall    = 0.0;

            // Get a list of users in this database who interacted with an article for the first time
            List <int> distinctUsers = db.UserActions.Select(x => x.UserID).Distinct().ToList();

            var distinctUserArticles = db.UserActions.GroupBy(x => new { x.UserID, x.ArticleID });

            // Now get suggestions for each of these users
            foreach (int user in distinctUsers)
            {
                List <Suggestion> suggestions = classifier.GetSuggestions(user, numSuggestions);
                bool foundOne  = false;
                int  userIndex = ratings.UserIndexToID.IndexOf(user);

                int userCorrectArticles = 0;
                int userTotalArticles   = distinctUserArticles.Count(x => x.Key.UserID == user);

                foreach (Suggestion s in suggestions)
                {
                    int articleIndex = ratings.ArticleIndexToID.IndexOf(s.ArticleID);

                    // If one of the top N suggestions is what the user ended up reading, then we're golden
                    if (ratings.Users[userIndex].ArticleRatings[articleIndex] != 0)
                    {
                        userCorrectArticles++;

                        if (!foundOne)
                        {
                            correctUsers++;
                            foundOne = true;
                        }
                    }
                }

                averagePrecision += (double)userCorrectArticles / numSuggestions;
                averageRecall    += (double)userCorrectArticles / userTotalArticles;
            }

            averagePrecision /= distinctUsers.Count;
            averageRecall    /= distinctUsers.Count;

            return(new TestResults(distinctUsers.Count, correctUsers, averageRecall, averagePrecision));
        }