public unsafe void Compress33Test()
        {
            int dataLen = 33;

            byte[] data     = GetRandomBytes(dataLen);
            byte[] expected = ComputeSingleSha(data);

            using Sha256Fo sha = new Sha256Fo();
            fixed(uint *hPt = &sha.hashState[0], wPt = &sha.w[0])
            {
                int dIndex = 0;

                for (int i = 0; i < 8; i++, dIndex += 4)
                {
                    wPt[i] = (uint)((data[dIndex] << 24) | (data[dIndex + 1] << 16) | (data[dIndex + 2] << 8) | data[dIndex + 3]);
                }
                wPt[8] = (uint)data[32] << 24 | 0b00000000_10000000_00000000_00000000U;

                wPt[15] = (uint)dataLen * 8;
                sha.Init(hPt);
                sha.Compress33(hPt, wPt);
                byte[] actual = sha.GetBytes(hPt);

                Assert.Equal(expected, actual);
            }
        }
Example #2
0
        public unsafe byte[] Compress33(byte[] data)
        {
            fixed(byte *dPt = data)
            fixed(uint *rip_blkPt = &rip.block[0], rip_hPt = &rip.hashState[0], sh_wPt = &sha.w[0])
            {
                // Step 1: compute SHA256 of data then copy result of hash (HashState) into RIPEMD160 block
                // so we just pass RIPEMD160 block as HashState of SHA256
                sha.Init(rip_blkPt);

                int dIndex = 0;

                for (int i = 0; i < 8; i++, dIndex += 4)
                {
                    sh_wPt[i] = (uint)((dPt[dIndex] << 24) | (dPt[dIndex + 1] << 16) | (dPt[dIndex + 2] << 8) | dPt[dIndex + 3]);
                }
                sh_wPt[8]  = (uint)((dPt[dIndex] << 24) | 0b00000000_10000000_00000000_00000000U);
                sh_wPt[9]  = 0;
                sh_wPt[10] = 0;
                sh_wPt[11] = 0;
                sh_wPt[12] = 0;
                sh_wPt[13] = 0;

                sh_wPt[14] = 0; // Message length for pad2, 33 byte or 264 bits
                sh_wPt[15] = 264;

                sha.Compress33(rip_blkPt, sh_wPt);

                // SHA256 compression is over and the result is already inside RIPEMD160 Block
                // But SHA256 endianness is reverse of RIPEMD160, so we have to do an endian swap

                // 32 byte or 8 uint items coming from SHA256
                for (int i = 0; i < 8; i++)
                {
                    // RIPEMD160 uses little-endian while SHA256 uses big-endian
                    rip_blkPt[i] =
                        (rip_blkPt[i] >> 24) | (rip_blkPt[i] << 24) |                       // Swap byte 1 and 4
                        ((rip_blkPt[i] >> 8) & 0xff00) | ((rip_blkPt[i] << 8) & 0xff0000);  // Swap byte 2 and 3
                }
                rip_blkPt[8]  = 0b00000000_00000000_00000000_10000000U;
                rip_blkPt[14] = 256;
                // rip_blkPt[15] = 0;
                // There is no need to set other items in block (like 13, 12,...)
                // because they are not changed and they are always zero

                rip.Init(rip_hPt);
                rip.CompressBlock(rip_blkPt, rip_hPt);

                return(rip.GetBytes(rip_hPt));
            }
        }
Example #3
0
        public static unsafe byte[] Compress33(Span <byte> data)
        {
            uint *pt = stackalloc uint[Sha256Fo.UBufferSize];

            fixed(byte *dPt = data)
            {
                pt[8]  = (uint)((dPt[0] << 24) | (dPt[1] << 16) | (dPt[2] << 8) | dPt[3]);
                pt[9]  = (uint)((dPt[4] << 24) | (dPt[5] << 16) | (dPt[6] << 8) | dPt[7]);
                pt[10] = (uint)((dPt[8] << 24) | (dPt[9] << 16) | (dPt[10] << 8) | dPt[11]);
                pt[11] = (uint)((dPt[12] << 24) | (dPt[13] << 16) | (dPt[14] << 8) | dPt[15]);
                pt[12] = (uint)((dPt[16] << 24) | (dPt[17] << 16) | (dPt[18] << 8) | dPt[19]);
                pt[13] = (uint)((dPt[20] << 24) | (dPt[21] << 16) | (dPt[22] << 8) | dPt[23]);
                pt[14] = (uint)((dPt[24] << 24) | (dPt[25] << 16) | (dPt[26] << 8) | dPt[27]);
                pt[15] = (uint)((dPt[28] << 24) | (dPt[29] << 16) | (dPt[30] << 8) | dPt[31]);
                pt[16] = (uint)((dPt[32] << 24) | 0b00000000_10000000_00000000_00000000U);
                pt[23] = 264;

                Sha256Fo.Init(pt);
                Sha256Fo.Compress33(pt);

                // Compute RIPEMD160
                pt[12] = (pt[7] >> 24) | (pt[7] << 24) | ((pt[7] >> 8) & 0xff00) | ((pt[7] << 8) & 0xff0000);
                pt[11] = (pt[6] >> 24) | (pt[6] << 24) | ((pt[6] >> 8) & 0xff00) | ((pt[6] << 8) & 0xff0000);
                pt[10] = (pt[5] >> 24) | (pt[5] << 24) | ((pt[5] >> 8) & 0xff00) | ((pt[5] << 8) & 0xff0000);
                pt[9]  = (pt[4] >> 24) | (pt[4] << 24) | ((pt[4] >> 8) & 0xff00) | ((pt[4] << 8) & 0xff0000);
                pt[8]  = (pt[3] >> 24) | (pt[3] << 24) | ((pt[3] >> 8) & 0xff00) | ((pt[3] << 8) & 0xff0000);
                pt[7]  = (pt[2] >> 24) | (pt[2] << 24) | ((pt[2] >> 8) & 0xff00) | ((pt[2] << 8) & 0xff0000);
                pt[6]  = (pt[1] >> 24) | (pt[1] << 24) | ((pt[1] >> 8) & 0xff00) | ((pt[1] << 8) & 0xff0000);
                pt[5]  = (pt[0] >> 24) | (pt[0] << 24) |                      // Swap byte 1 and 4
                         ((pt[0] >> 8) & 0xff00) | ((pt[0] << 8) & 0xff0000); // Swap byte 2 and 3
                pt[13] = 0b00000000_00000000_00000000_10000000U;
                pt[14] = 0;
                pt[15] = 0;
                pt[16] = 0;
                pt[19] = 256;

                Ripemd160Fo.Init(pt);
                Ripemd160Fo.CompressBlock(pt);

                return(Ripemd160Fo.GetBytes(pt));
            }
        }
Example #4
0
        /// <summary>
        /// Returns HASH160(OP_0 | Push(HASH160(33_bytes)))
        /// </summary>
        public unsafe byte[] Compress33_P2sh(Span <byte> data)
        {
            fixed(byte *dPt = data)
            fixed(uint *rip_blkPt = &rip.block[0], rip_hPt = &rip.hashState[0], sh_wPt = &sha.w[0])
            {
                sh_wPt[0]  = (uint)((dPt[0] << 24) | (dPt[1] << 16) | (dPt[2] << 8) | dPt[3]);
                sh_wPt[1]  = (uint)((dPt[4] << 24) | (dPt[5] << 16) | (dPt[6] << 8) | dPt[7]);
                sh_wPt[2]  = (uint)((dPt[8] << 24) | (dPt[9] << 16) | (dPt[10] << 8) | dPt[11]);
                sh_wPt[3]  = (uint)((dPt[12] << 24) | (dPt[13] << 16) | (dPt[14] << 8) | dPt[15]);
                sh_wPt[4]  = (uint)((dPt[16] << 24) | (dPt[17] << 16) | (dPt[18] << 8) | dPt[19]);
                sh_wPt[5]  = (uint)((dPt[20] << 24) | (dPt[21] << 16) | (dPt[22] << 8) | dPt[23]);
                sh_wPt[6]  = (uint)((dPt[24] << 24) | (dPt[25] << 16) | (dPt[26] << 8) | dPt[27]);
                sh_wPt[7]  = (uint)((dPt[28] << 24) | (dPt[29] << 16) | (dPt[30] << 8) | dPt[31]);
                sh_wPt[8]  = (uint)((dPt[32] << 24) | 0b00000000_10000000_00000000_00000000U);
                sh_wPt[9]  = 0;
                sh_wPt[10] = 0;
                sh_wPt[11] = 0;
                sh_wPt[12] = 0;
                sh_wPt[13] = 0;
                sh_wPt[14] = 0;
                sh_wPt[15] = 264;

                sha.Init(rip_blkPt);
                sha.Compress33(rip_blkPt, sh_wPt);

                for (int i = 0; i < 8; i++)
                {
                    // RIPEMD160 uses little-endian while SHA256 uses big-endian
                    rip_blkPt[i] =
                        (rip_blkPt[i] >> 24) | (rip_blkPt[i] << 24) |                       // Swap byte 1 and 4
                        ((rip_blkPt[i] >> 8) & 0xff00) | ((rip_blkPt[i] << 8) & 0xff0000);  // Swap byte 2 and 3
                }
                rip_blkPt[8]  = 0b00000000_00000000_00000000_10000000U;
                rip_blkPt[14] = 256;

                rip.Init(rip_hPt);
                rip.CompressBlock(rip_blkPt, rip_hPt);

                // Compute second HASH160
                sh_wPt[0] = 0x00140000U | ((rip_hPt[0] << 8) & 0xff00) | ((rip_hPt[0] >> 8) & 0xff);
                sh_wPt[1] = ((rip_hPt[0] << 8) & 0xff000000) | ((rip_hPt[0] >> 8) & 0x00ff0000) |
                            ((rip_hPt[1] << 8) & 0x0000ff00) | ((rip_hPt[1] >> 8) & 0x000000ff);
                sh_wPt[2] = ((rip_hPt[1] << 8) & 0xff000000) | ((rip_hPt[1] >> 8) & 0x00ff0000) |
                            ((rip_hPt[2] << 8) & 0x0000ff00) | ((rip_hPt[2] >> 8) & 0x000000ff);
                sh_wPt[3] = ((rip_hPt[2] << 8) & 0xff000000) | ((rip_hPt[2] >> 8) & 0x00ff0000) |
                            ((rip_hPt[3] << 8) & 0x0000ff00) | ((rip_hPt[3] >> 8) & 0x000000ff);
                sh_wPt[4] = ((rip_hPt[3] << 8) & 0xff000000) | ((rip_hPt[3] >> 8) & 0x00ff0000) |
                            ((rip_hPt[4] << 8) & 0x0000ff00) | ((rip_hPt[4] >> 8) & 0x000000ff);
                sh_wPt[5] = ((rip_hPt[4] << 8) & 0xff000000) | ((rip_hPt[4] >> 8) & 0x00ff0000) |
                            0b00000000_00000000_10000000_00000000U;
                sh_wPt[6] = 0;
                sh_wPt[7] = 0;
                sh_wPt[8] = 0;
                // 9 to 14 are already 0
                sh_wPt[15] = 176; // 22*8

                sha.Init(rip_blkPt);
                sha.Compress22(rip_blkPt, sh_wPt);

                for (int i = 0; i < 8; i++)
                {
                    // RIPEMD160 uses little-endian while SHA256 uses big-endian
                    rip_blkPt[i] =
                        (rip_blkPt[i] >> 24) | (rip_blkPt[i] << 24) |                       // Swap byte 1 and 4
                        ((rip_blkPt[i] >> 8) & 0xff00) | ((rip_blkPt[i] << 8) & 0xff0000);  // Swap byte 2 and 3
                }
                rip_blkPt[8]  = 0b00000000_00000000_00000000_10000000U;
                rip_blkPt[14] = 256;

                rip.Init(rip_hPt);
                rip.CompressBlock(rip_blkPt, rip_hPt);

                return(rip.GetBytes(rip_hPt));
            }
        }