Example #1
0
        public void Train()
        {
            var        network     = createNetwork();
            IMLDataSet trainingSet = EncogUtility.LoadCSV2Memory(normFile, network.InputCount, 1, false, CSVFormat.English, false);

            IMLTrain train     = new Backpropagation(network, trainingSet);
            int      epoch     = 1;
            int      truecases = 0;

            do
            {
                train.Iteration();
                Console.WriteLine(@"Epoch #" + epoch + @" Error:" + train.Error);
                epoch++;
            } while (train.Error > 0.05);
            train.FinishTraining();

            Console.WriteLine(@"Neural Network Results:");
            foreach (IMLDataPair pair in trainingSet)
            {
                IMLData output = network.Compute(pair.Input);
                Console.WriteLine(@" actual=" + output[0] + @",ideal=" + pair.Ideal[0]);
                if (pair.Ideal[0] == 1 && output[0] > 0.5)
                {
                    truecases++;
                }
                else if (pair.Ideal[0] == 0 && output[0] < 0.5)
                {
                    truecases++;
                }
            }
            Console.WriteLine(truecases);
            SerializeObject.Save(networkFile, network);
        }
        public void geneticNeural()
        {
            FeedforwardNetwork network = createNetwork();

            // train the neural network
            Console.WriteLine("Determining initial scores");
            TicTacToeGenetic train = new TicTacToeGenetic(network, true,
                                                          NeuralTicTacToe.POPULATION_SIZE,
                                                          NeuralTicTacToe.MUTATION_PERCENT, NeuralTicTacToe.MATE_PERCENT,
                                                          this.player2.GetType());

            train.UseThreadPool = true;
            ThreadPool.SetMaxThreads(NeuralTicTacToe.THREAD_POOL_SIZE, NeuralTicTacToe.THREAD_POOL_SIZE);
            int epoch = 1;

            DateTime started = DateTime.Now;

            int minutes = 0;

            do
            {
                train.Iteration();

                TimeSpan span = (DateTime.Now - started);
                minutes = span.Minutes;

                Console.WriteLine("Epoch #" + epoch + " Error:" + train.getScore()
                                  + ",minutes left="
                                  + (NeuralTicTacToe.TRAIN_MINUTES - minutes));
                epoch++;
            } while (minutes < NeuralTicTacToe.TRAIN_MINUTES);

            SerializeObject.Save("tictactoe.net", train.Network);
        }
        public void TestPersistSerial()
        {
            BAMNetwork network = Create();

            SerializeObject.Save(SERIAL_FILENAME.ToString(), network);
            var network2 = (BAMNetwork)SerializeObject.Load(SERIAL_FILENAME.ToString());

            ValidateBAM(network2);
        }
Example #4
0
        public void TestPersistSerial()
        {
            SupportVectorMachine network = Create();

            SerializeObject.Save(SERIAL_FILENAME.ToString(), network);
            SupportVectorMachine network2 = (SupportVectorMachine)SerializeObject.Load(SERIAL_FILENAME.ToString());

            Validate(network2);
        }
Example #5
0
        public void TestContPersistSerial()
        {
            HiddenMarkovModel sourceHMM = BuildContHMM();

            SerializeObject.Save(SERIAL_FILENAME.ToString(), sourceHMM);
            HiddenMarkovModel resultHMM = (HiddenMarkovModel)SerializeObject.Load(SERIAL_FILENAME.ToString());

            Validate(resultHMM, sourceHMM);
        }
        public void TestPersistSerial()
        {
            NEATPopulation pop = Generate();

            SerializeObject.Save(SERIAL_FILENAME.ToString(), pop);
            NEATPopulation pop2 = (NEATPopulation)SerializeObject.Load(SERIAL_FILENAME.ToString());

            Validate(pop2);
        }
        public void TestPersistSerial()
        {
            BasicPNN network = create();

            SerializeObject.Save(SERIAL_FILENAME.ToString(), network);
            BasicPNN network2 = (BasicPNN)SerializeObject.Load(SERIAL_FILENAME.ToString());

            XOR.VerifyXOR(network2, 0.001);
        }
Example #8
0
        public void testPersistSerial()
        {
            PrgPopulation pop = Create();

            Validate(pop);
            SerializeObject.Save(SERIAL_FILENAME.ToString(), pop);
            PrgPopulation pop2 = (PrgPopulation)SerializeObject.Load(SERIAL_FILENAME.ToString());

            Validate(pop2);
        }
Example #9
0
        public void TestPersistSerial()
        {
            HopfieldNetwork network = new HopfieldNetwork(4);

            network.SetWeight(1, 1, 1);

            SerializeObject.Save(SERIAL_FILENAME.ToString(), network);
            HopfieldNetwork network2 = (HopfieldNetwork)SerializeObject.Load(SERIAL_FILENAME.ToString());

            ValidateHopfield(network2);
        }
        public void TestPersistSerial()
        {
            BoltzmannMachine network = new BoltzmannMachine(4);

            network.SetWeight(1, 1, 1);
            network.Threshold[2] = 2;

            SerializeObject.Save(SERIAL_FILENAME.ToString(), network);
            BoltzmannMachine network2 = (BoltzmannMachine)SerializeObject.Load(SERIAL_FILENAME.ToString());

            ValidateHopfield(network2);
        }
            public void SavePAPContainer(string pathName, string fileName)
            {
                if (playerNetworkPool == null)
                {
                    throw new Exception("Network must be set before the PAP container can be saved out.");
                }

                //Save out the PAPContainer (without the network)
                SerializeObject.Save(pathName + fileName + ".PAPc", this);

                //Save out the network
                NNLoadSave.saveNetwork(playerNetworkPool.BaseNetwork, fileName + ".eNN", pathName);
            }
Example #12
0
        public void Serialize()
        {
            using (SaveFileDialog dialog = new SaveFileDialog())
            {
                dialog.Filter           = "ennq files (*.ennq)|*.ennq";
                dialog.FilterIndex      = 2;
                dialog.RestoreDirectory = true;

                if (dialog.ShowDialog() == DialogResult.OK)
                {
                    SerializeObject.Save(dialog.FileName, Network);
                }
            }
        }
        public void Process()
        {
            this.network = NetworkUtil.CreateNetwork();
            Console.WriteLine("Preparing training sets...");
            this.common        = new CommonWords(Config.FILENAME_COMMON_WORDS);
            this.histogramGood = new WordHistogram(this.common);
            this.histogramBad  = new WordHistogram(this.common);

            // load the good words
            this.histogramGood.BuildFromFile(Config.FILENAME_GOOD_TRAINING_TEXT);
            this.histogramGood.BuildComplete();

            // load the bad words
            this.histogramBad.BuildFromFile(Config.FILENAME_BAD_TRAINING_TEXT);
            this.histogramBad.BuildComplete();

            // remove low scoring words
            this.histogramGood
            .RemoveBelow((int)this.histogramGood.CalculateMean());
            this.histogramBad.RemovePercent(0.99);

            // remove common words
            this.histogramGood.RemoveCommon(this.histogramBad);

            this.histogramGood.Trim(Config.INPUT_SIZE);

            this.goodAnalysis = new AnalyzeSentences(this.histogramGood,
                                                     Config.INPUT_SIZE);
            this.badAnalysis = new AnalyzeSentences(this.histogramGood,
                                                    Config.INPUT_SIZE);

            this.goodAnalysis.Process(this.trainingSet, 0.9,
                                      Config.FILENAME_GOOD_TRAINING_TEXT);
            this.badAnalysis.Process(this.trainingSet, 0.1,
                                     Config.FILENAME_BAD_TRAINING_TEXT);

            this.sampleCount = this.trainingSet.Ideal.Count;
            Console.WriteLine("Processing " + this.sampleCount + " training sets.");

            AllocateTrainingSets();

            CopyTrainingSets();

            TrainNetworkBackpropBackprop();
            SerializeObject.Save(Config.FILENAME_WHENBORN_NET, this.network);
            SerializeObject.Save(Config.FILENAME_HISTOGRAM, this.histogramGood);
            Console.WriteLine("Training complete.");
        }
Example #14
0
        public void geneticNeural()
        {
            Stopwatch          sw      = new Stopwatch();
            FeedforwardNetwork network = createNetwork();

            // train the neural network
            Console.WriteLine("Determining initial scores");
            TicTacToeGenetic train = new TicTacToeGenetic(network, true,
                                                          NeuralTicTacToe.POPULATION_SIZE,
                                                          NeuralTicTacToe.MUTATION_PERCENT, NeuralTicTacToe.MATE_PERCENT,
                                                          this.player2.GetType());

            train.UseThreadPool = true;
            sw.Stop();

            string duration = String.Format("Training_time: {0}", sw.Elapsed.Minutes);

            Console.WriteLine(duration);

            ThreadPool.SetMaxThreads(NeuralTicTacToe.THREAD_POOL_SIZE, NeuralTicTacToe.THREAD_POOL_SIZE);
            int epoch = 1;

            DateTime started = DateTime.Now;

            int    minutes = 0;
            double error   = train.getScore();

            do
            {
                sw.Start();
                error = train.getScore();
                if (error > 0)
                {
                    train.Iteration();
                }
                sw.Stop();

                minutes = sw.Elapsed.Minutes;

                string observation = String.Format("Epoch: {0}, Error:{1}, minutes_left : {2}", epoch, error, (NeuralTicTacToe.TRAIN_MINUTES - minutes));
                Console.WriteLine(observation);
                epoch++;
            } while (minutes < NeuralTicTacToe.TRAIN_MINUTES && error > 0.00001d);

            SerializeObject.Save("tictactoe.net", train.Network);
        }
Example #15
0
        public void Execute(IExampleInterface app)
        {
            this.app = app;
            this.app = app;
            IMLDataSet   trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
            BasicNetwork network     = EncogUtility.SimpleFeedForward(2, 6, 0, 1, false);

            EncogUtility.TrainToError(network, trainingSet, 0.01);
            double error = network.CalculateError(trainingSet);

            SerializeObject.Save("encog.ser", network);
            network = (BasicNetwork)SerializeObject.Load("encog.ser");
            double error2 = network.CalculateError(trainingSet);

            app.WriteLine("Error before save to ser: " + Format.FormatPercent(error));
            app.WriteLine("Error before after to ser: " + Format.FormatPercent(error2));
        }
Example #16
0
        public static void Generate(ForestConfig config, bool useOneOf)
        {
            var generate = new GenerateData(config);

            generate.Step1();
            generate.Step2();
            DataNormalization norm = generate.Step3(useOneOf);

            // save the normalize object
            SerializeObject.Save(config.NormalizeFile.ToString(), norm);

            // create and save the neural network
            BasicNetwork network =
                EncogUtility.SimpleFeedForward(norm.GetNetworkInputLayerSize(),
                                               config.HiddenCount, 0, norm.GetNetworkOutputLayerSize(), true);

            EncogDirectoryPersistence.SaveObject(config.TrainedNetworkFile, network);
        }
Example #17
0
 /// <summary>
 /// Saves a normalization to the specified folder with the specified name.
 /// </summary>
 /// <param name="directory">The directory.</param>
 /// <param name="file">The file.</param>
 /// <param name="normTosave">The norm tosave.</param>
 public static void SaveNormalization(string directory, string file, DataNormalization normTosave)
 {
     SerializeObject.Save(directory + file, normTosave);
 }
 public void saveNeuralNetwork()
 {
     SerializeObject.Save("sp500.net", network);
 }