Example #1
0
    private void OnEnable()
    {
        _isInitialized = false;

        if (_material == null)
        {
            _material = Resources.Load("Materials/SS_Shadow Multiply", typeof(Material)) as Material;
            if (_material == null)
            {
                Debug.LogError("Standard \"Materials/SS_Shadow Multiply\" material was not found. Please assign a shadow material manually for shadow to work.", this);
                return;
            }
        }

        if (_layerMask == 0)
        {
            Debug.LogError("LayerMask is empty! Shadow won't cast on any surface", this);
            return;
        }

        UpdateComponents();
        UpdateProperties();

        _isGameObjectActivePrev = SS_Extensions.IsActiveInHierarchy(gameObject);
        _isFirstCalculation     = true;

        RegisterShadow();

        _isInitialized = true;
    }
 private void Start()
 {
     if (!SS_GUILayout.IsRuntimePlatformMobile())
     {
         SS_Extensions.SetActive(gameObject, false);
     }
 }
    private void OnGUI()
    {
        if (!visible)
        {
            return;
        }

        const float initWidth      = 275f;
        float       initHeight     = 70f;
        const float initItemHeight = 30f;

        SS_GUILayout.itemWidth  = initWidth - 20f;
        SS_GUILayout.itemHeight = initItemHeight;
        SS_GUILayout.yPos       = 0f;
        SS_GUILayout.hovered    = false;

        if (SS_GUILayout.IsRuntimePlatformMobile())
        {
            SS_GUILayout.UpdateScaleMobile();
        }
        else
        {
            SS_GUILayout.UpdateScaleDesktop(initHeight + 30f);
        }

        string levelName = Application.loadedLevelName;
        string sceneName = string.Empty;
        string text      = string.Empty;

        switch (levelName)
        {
        case "SS_DiscoLights":
            sceneName = "Disco Lights Scene";
            text      = "    This is an example of a more creative use of Swift Shadows, with hundreds " +
                        "of shadow objects calculated and drawn at the same. All light spots " +
                        "use a special \"light\" material and are rendered within a single draw call.";
            break;

        case "SS_Helicopter":
            sceneName = "Animated Shadows Scene";
            text      = "    This scene demonstrates shadows following the transform of object they " +
                        "are attached to. In this scene, the blades and body of helicopter, as " +
                        "well as the platform and dish of the radar station, are actually two " +
                        "different overlayed shadows. Nevertheless, the shadows are still drawn in a single " +
                        "draw call by using a texture atlas.";
            break;

        case "SS_MovingCubes":
            sceneName = "Moving Cubes Scene";
            text      = "    This is a generic demonstration of what Swift Shadows can do.\n" +
                        "    A raycast from the light source to the cubes determines the position of shadow, " +
                        "and a projected quad is rendered in place. All shadows are drawn with a single " +
                        "draw call, which is especially useful for mobile devices.\n" +
                        "    You can also notice the limitation: shadows are casted on one surface at time and " +
                        "can extend beyond the surface they are projected on. Shadows can be set to fade away " +
                        "as they fall at extreme angles to make this effect less noticeable.";
            break;

        case "SS_MultipleShadows":
            sceneName = "Multiple Shadows Demo";
            text      = "    Multiple shadows components can be set for a single object. " +
                        "There are 4 light sources in this scene, each resulting in a separate shadow of the object.";
            break;

        case "SS_TerrainInteraction":
            initHeight += 25f;
            sceneName   = "Terrain Interaction Demo";
            text        = "    This demonstrates how Swift Shadows can be used on uneven surfaces like terrain.\n" +
                          "    \"Use two cameras\" enables drawing the character and shadow on a separate pass, " +
                          "which eliminates the effect of shadow being clipped with terrain. This comes with the cost " +
                          "of some possible artifacts that aren't noticeable for most situations.\n";
            break;
        }

        if (levelName != "SS_TerrainInteraction")
        {
            if (SS_GUILayout.IsRuntimePlatformMobile())
            {
                text += "\n    You can rotate the camera with two fingers.\n";
            }
            else
            {
                if (levelName == "SS_DiscoLights")
                {
                    text += "\n    You can rotate the camera by holding the right mouse button.\n";
                }
                else
                {
                    text += "\n    You can rotate the camera by holding the right mouse button and zoom with mouse wheel.\n";
                }
            }
        }


        foreach (SS_ShadowMeshManager meshManager in SS_ShadowManager.Instance.ShadowManagers)
        {
            text += string.Format((meshManager.IsStatic ? "\nTotal shadows (static): " : "\nTotal shadows: ") + "{0}, drawn: {1}",
                                  meshManager.ShadowsCount,
                                  meshManager.VisibleShadowsCount);
        }

        var centeredStyle = GUI.skin.label;

        centeredStyle.alignment = TextAnchor.MiddleLeft;

        float textHeight = centeredStyle.CalcHeight(new GUIContent(text, ""), SS_GUILayout.itemWidth);

        initHeight += textHeight;

        GUI.BeginGroup(new Rect(15f, 15f, initWidth, initHeight), sceneName, GUI.skin.window);

        SS_GUILayout.yPos = 20f;

        SS_GUILayout.itemHeight = centeredStyle.CalcHeight(new GUIContent(text, ""), SS_GUILayout.itemWidth);

        SS_GUILayout.Label(text);
        SS_GUILayout.itemHeight = initItemHeight;

        if (levelName == "SS_TerrainInteraction" && TerrainDemoPrimaryCamera != null)
        {
            bool changed;
            _terrainDemoSecondaryCameraOn = SS_GUILayout.Toggle(_terrainDemoSecondaryCameraOn, "Use two cameras", out changed);
            if (changed)
            {
                if (_terrainDemoSecondaryCameraOn)
                {
                    SS_Extensions.SetActive(TerrainDemoSecondaryCamera.gameObject, true);
                    TerrainDemoPrimaryCamera.cullingMask = _terrainDemoPrimaryCameraLayersDefault;
                }
                else
                {
                    SS_Extensions.SetActive(TerrainDemoSecondaryCamera.gameObject, false);
                    TerrainDemoPrimaryCamera.cullingMask = TerrainDemoPrimaryCameraLayers;
                }

                SS_ShadowManager.Instance.UpdateCameraEvents(TerrainDemoSecondaryCamera);
            }
        }

        GUI.color = new Color(1f, 0.6f, 0.6f, 1f);
        if (GUI.Button(new Rect(SS_GUILayout.paddingLeft, initHeight - 40f, SS_GUILayout.itemWidth, 30f), "Back to Main Menu"))
        {
            SS_CameraFade.StartAlphaFade(Color.black, false, 0.5f, 0f, () => Application.LoadLevel("SS_Menu"));
        }

        GUI.EndGroup();

        GUI.color = Color.white;
        SS_GUILayout.DrawLogo(Logo);
    }
Example #4
0
    public RecalculateShadowResult RecalculateShadow(Plane[] frustumPlanes, bool force)
    {
        _isVisible = _isStatic;

        // Determine whether the owner GameObject changed the active state
        // and react correspondingly
        bool isGameObjectActive = SS_Extensions.IsActiveInHierarchy(gameObject);

        if (isGameObjectActive != _isGameObjectActivePrev)
        {
            _isGameObjectActivePrev = isGameObjectActive;
            if (isGameObjectActive)
            {
                RegisterShadow();
                return(RecalculateShadowResult.ChangedManager);
            }
            else
            {
                UnregisterShadow();
                return(RecalculateShadowResult.ChangedManager);
            }
        }

        _isGameObjectActivePrev = isGameObjectActive;
        if (!isGameObjectActive)
        {
            return(RecalculateShadowResult.Skipped);
        }

        // Updating the transform state (position and forward vectors)
        // Determine whether the transform has moved
        Vector3 transformPosition = _transform.position;
        Vector3 transformForward  = _transform.forward;

        bool transformChanged = false;

        if (_autoStaticTime > 0)
        {
            if (transformPosition.x != _transformPositionPrev.x ||
                transformPosition.y != _transformPositionPrev.y ||
                transformPosition.z != _transformPositionPrev.z ||
                transformForward.x != _transformForwardPrev.x ||
                transformForward.y != _transformForwardPrev.y ||
                transformForward.z != _transformForwardPrev.z
                )
            {
                _autoStaticTimeCounter = 0f;
                transformChanged       = true;
            }

            _transformPositionPrev = transformPosition;
            _transformForwardPrev  = transformForward;
        }

        if (!_isFirstCalculation)
        {
            // If we have AutoStatic
            if (_autoStaticTime > 0f)
            {
                // If the object has moved - remove the shadow
                // from static manager and move to non-static
                if (_isStatic && transformChanged)
                {
                    UnregisterShadow();
                    _isStatic = false;
                    RegisterShadow();
                    return(RecalculateShadowResult.ChangedManager);
                }

                // If the object hasn't moved for AutoStaticTime seconds,
                // then mark it as static
                _autoStaticTimeCounter += Time.deltaTime;
                if (!_isStatic && _autoStaticTimeCounter > _autoStaticTime)
                {
                    UnregisterShadow();
                    _isStatic = true;
                    RegisterShadow();
                    return(RecalculateShadowResult.ChangedManager);
                }
            }

            // Do not update static shadows by default
            if (_isStatic && !force)
            {
                return(RecalculateShadowResult.Skipped);
            }

            // Return if the time hasn't come yet
            if (_frameSkip != 0)
            {
                if (_frameSkipCounter < _frameSkip)
                {
                    _frameSkipCounter++;
                    return(RecalculateShadowResult.Skipped);
                }

                _frameSkipCounter = 0;
            }
        }

        // Is this our first update?
        _isFirstCalculation = false;

        // Determine the light source position
        bool    useLightSource      = _lightVectorSource == LightVectorSourceEnum.GameObject && _lightSourceObject != null;
        Vector3 lightSourcePosition = useLightSource ? _lightSourceObject.transform.position : new Vector3();

        // The actual light direction vector that'll be used
        Vector3 actualLightVector;

        if (_lightVectorSource == LightVectorSourceEnum.GameObject && _lightSourceObject != null)
        {
            if (_lightSourceObjectIsDirectionalLight)
            {
                actualLightVector = _lightSourceObject.rotation * Vector3.forward;
            }
            else
            {
                actualLightVector.x = transformPosition.x - lightSourcePosition.x;
                actualLightVector.y = transformPosition.y - lightSourcePosition.y;
                actualLightVector.z = transformPosition.z - lightSourcePosition.z;
                actualLightVector   = actualLightVector.FastNormalized();
            }
        }
        else
        {
            actualLightVector = _lightVector;
        }

        _actualLightVectorPrev = actualLightVector;

        // Do a raycast from transform.position to the center of the shadow
        RaycastHit hitInfo;
        bool       raycastResult = Physics.Raycast(transformPosition, actualLightVector, out hitInfo, _projectionDistance, _layerMask);

        if (raycastResult)
        {
            // Scale the shadow respectively
            Vector3 lossyScale             = transform.lossyScale;
            float   scaledDoubleShadowSize = Mathf.Max(Mathf.Max(lossyScale.x, lossyScale.y), lossyScale.z) * ShadowSize;

            if (!_isStatic && _cullInvisible)
            {
                // We can calculate approximate bounds for orthographic shadows easily
                // and cull shadows based on these bounds and camera frustum
                if (!_isPerspectiveProjection)
                {
                    Bounds bounds = new Bounds(hitInfo.point, new Vector3(scaledDoubleShadowSize, scaledDoubleShadowSize, scaledDoubleShadowSize));
                    _isVisible = GeometryUtility.TestPlanesAABB(frustumPlanes, bounds);
                    if (!_isVisible)
                    {
                        return(RecalculateShadowResult.Skipped);
                    }
                }
                else
                {
                    // For perspective shadows, we can at least try to
                    // not draw shadows that fall on invisible objects
                    Transform hitTransform = hitInfo.collider.transform;
                    if (frustumPlanes != null)
                    {
                        Renderer hitRenderer = hitTransform != null ? hitTransform.renderer : null;
                        if (hitRenderer != null)
                        {
                            _isVisible = GeometryUtility.TestPlanesAABB(frustumPlanes, hitRenderer.bounds);
                            if (!_isVisible)
                            {
                                return(RecalculateShadowResult.Skipped);
                            }
                        }
                    }
                }
            }

            // Calculate angle from light direction vector to surface normal
            _normal = hitInfo.normal;
            float angleToNormal = SS_Math.FastAcos(-Vector3.Dot(actualLightVector, _normal)) * Mathf.Rad2Deg;
            if (angleToNormal > _angleFadeMax)
            {
                // Skip shadows that fall with extreme angles
                _isVisible = false;
                return(RecalculateShadowResult.Skipped);
            }

            // Determine the forward direction of shadow base quad
            Vector3 forward;
            float   dot = Vector3.Dot(transformForward, actualLightVector);
            if (Mathf.Abs(dot) < 1f - Vector3.kEpsilon)
            {
                forward = (transformForward - dot * actualLightVector).FastNormalized();
            }
            else
            {
                // If the forward direction matches the light direction vector somehow
                Vector3 transformUp = _transform.up;
                forward = (transformUp - Vector3.Dot(transformUp, actualLightVector) * actualLightVector).FastNormalized();
            }

            // Rotation of shadow base quad
            Quaternion rotation = Quaternion.LookRotation(forward, -actualLightVector);

            // Optimized version of
            // Vector3 right = rotation * Vector3.right;
            float   num2  = rotation.y * 2f;
            float   num3  = rotation.z * 2f;
            float   num5  = rotation.y * num2;
            float   num6  = rotation.z * num3;
            float   num7  = rotation.x * num2;
            float   num8  = rotation.x * num3;
            float   num11 = rotation.w * num2;
            float   num12 = rotation.w * num3;
            Vector3 right;
            right.x = 1f - (num5 + num6);
            right.y = num7 + num12;
            right.z = num8 - num11;

            // Base vertices calculation
            float scaledShadowSize = scaledDoubleShadowSize * 0.5f;
            float aspectRatioInv   = 1f / _aspectRatio;

            Vector3 diff;
            diff.x = (forward.x - right.x * aspectRatioInv) * scaledShadowSize;
            diff.y = (forward.y - right.y * aspectRatioInv) * scaledShadowSize;
            diff.z = (forward.z - right.z * aspectRatioInv) * scaledShadowSize;
            Vector3 sum;
            sum.x = (forward.x + right.x * aspectRatioInv) * scaledShadowSize;
            sum.y = (forward.y + right.y * aspectRatioInv) * scaledShadowSize;
            sum.z = (forward.z + right.z * aspectRatioInv) * scaledShadowSize;

            Vector3 baseVertex;
            baseVertex.x     = transformPosition.x - sum.x;
            baseVertex.y     = transformPosition.y - sum.y;
            baseVertex.z     = transformPosition.z - sum.z;
            _baseVertices[0] = baseVertex;

            baseVertex.x     = transformPosition.x + diff.x;
            baseVertex.y     = transformPosition.y + diff.y;
            baseVertex.z     = transformPosition.z + diff.z;
            _baseVertices[1] = baseVertex;

            baseVertex.x     = transformPosition.x + sum.x;
            baseVertex.y     = transformPosition.y + sum.y;
            baseVertex.z     = transformPosition.z + sum.z;
            _baseVertices[2] = baseVertex;

            baseVertex.x     = transformPosition.x - diff.x;
            baseVertex.y     = transformPosition.y - diff.y;
            baseVertex.z     = transformPosition.z - diff.z;
            _baseVertices[3] = baseVertex;

            // Calculate a plane from normal and position
            SS_Plane shadowPlane = new SS_Plane();
            shadowPlane.SetNormalAndPosition(_normal, hitInfo.point + _normal * _shadowOffset);

            float  distanceToPlane;
            SS_Ray ray = new SS_Ray();

            // Calculate the shadow vertices
            if (_isPerspectiveProjection && useLightSource)
            {
                ray.direction = lightSourcePosition - _baseVertices[0];
                ray.origin    = _baseVertices[0];
                shadowPlane.Raycast(ref ray, out distanceToPlane);
                _shadowVertices[0] = ray.origin + ray.direction * distanceToPlane;

                ray.direction = lightSourcePosition - _baseVertices[1];
                ray.origin    = _baseVertices[1];
                shadowPlane.Raycast(ref ray, out distanceToPlane);
                _shadowVertices[1] = ray.origin + ray.direction * distanceToPlane;

                ray.direction = lightSourcePosition - _baseVertices[2];
                ray.origin    = _baseVertices[2];
                shadowPlane.Raycast(ref ray, out distanceToPlane);
                _shadowVertices[2] = ray.origin + ray.direction * distanceToPlane;

                ray.direction = lightSourcePosition - _baseVertices[3];
                ray.origin    = _baseVertices[3];
                shadowPlane.Raycast(ref ray, out distanceToPlane);
                _shadowVertices[3] = ray.origin + ray.direction * distanceToPlane;
            }
            else
            {
                ray.direction = actualLightVector;

                ray.origin = _baseVertices[0];
                shadowPlane.Raycast(ref ray, out distanceToPlane);
                _shadowVertices[0] = ray.origin + ray.direction * distanceToPlane;

                ray.origin = _baseVertices[1];
                shadowPlane.Raycast(ref ray, out distanceToPlane);
                _shadowVertices[1] = ray.origin + ray.direction * distanceToPlane;

                ray.origin = _baseVertices[2];
                shadowPlane.Raycast(ref ray, out distanceToPlane);
                _shadowVertices[2] = ray.origin + ray.direction * distanceToPlane;

                ray.origin = _baseVertices[3];
                shadowPlane.Raycast(ref ray, out distanceToPlane);
                _shadowVertices[3] = ray.origin + ray.direction * distanceToPlane;
            }

            // Calculate the shadow alpha
            float shadowAlpha = _initialAlpha;

            // Alpha base on distance to the surface
            float distance = hitInfo.distance;
            if (distance > _fadeDistance)
            {
                shadowAlpha = shadowAlpha - (distance - _fadeDistance) / (_projectionDistance - _fadeDistance) * shadowAlpha;
            }

            // Alpha based on shadow fall angle
            if (angleToNormal > _angleFadeMin)
            {
                shadowAlpha = shadowAlpha - (angleToNormal - _angleFadeMin) / (_angleFadeMax - _angleFadeMin) * shadowAlpha;
            }

            // Convert float alpha to byte
            _color.a   = shadowAlpha;
            _color32.a = (byte)(shadowAlpha * 255f);

            _isVisible = true;
        }

        return(RecalculateShadowResult.Recalculated);
    }