public void TestClassification()
        {
            FileInfo rawFile = TEMP_DIR.CreateFile("simple.csv");
            FileInfo egaFile = TEMP_DIR.CreateFile("simple.ega");
            FileInfo outputFile = TEMP_DIR.CreateFile("simple_output.csv");

            FileUtil.CopyResource("Encog.Resources.simple.csv", rawFile);
            FileUtil.CopyResource("Encog.Resources.simple-c.ega", egaFile);

            EncogAnalyst analyst = new EncogAnalyst();
            analyst.AddAnalystListener(new ConsoleAnalystListener());
            analyst.Load(egaFile);

            analyst.ExecuteTask("task-full");

            ReadCSV csv = new ReadCSV(outputFile.ToString(), true, CSVFormat.English);
            while (csv.Next())
            {
                Assert.AreEqual(csv.Get(3), csv.Get(4));
            }

            Assert.AreEqual(4, analyst.Script.Fields.Length);
            Assert.AreEqual(3, analyst.Script.Fields[3].ClassMembers.Count);

            csv.Close();
        }
Example #2
0
        public void TestClassification()
        {
            FileInfo rawFile    = TEMP_DIR.CreateFile("simple.csv");
            FileInfo egaFile    = TEMP_DIR.CreateFile("simple.ega");
            FileInfo outputFile = TEMP_DIR.CreateFile("simple_output.csv");

            FileUtil.CopyResource("Encog.Resources.simple.csv", rawFile);
            FileUtil.CopyResource("Encog.Resources.simple-c.ega", egaFile);

            EncogAnalyst analyst = new EncogAnalyst();

            analyst.AddAnalystListener(new ConsoleAnalystListener());
            analyst.Load(egaFile);

            analyst.ExecuteTask("task-full");

            ReadCSV csv = new ReadCSV(outputFile.ToString(), true, CSVFormat.English);

            while (csv.Next())
            {
                Assert.AreEqual(csv.Get(3), csv.Get(4));
            }

            Assert.AreEqual(4, analyst.Script.Fields.Length);
            Assert.AreEqual(3, analyst.Script.Fields[3].ClassMembers.Count);

            csv.Close();
        }
Example #3
0
        /// <summary>
        /// This method is called to determine the birth year for a person. It
        /// obtains 100 web pages that Yahoo returns for that person. Each of these
        /// pages is then searched for the birth year of that person. Which ever year
        /// is selected the largest number of times is selected as the birth year.
        /// </summary>
        public void Process()
        {
            ReadCSV famous = new ReadCSV("famous.csv");

            Report("Building training data from list of famous people.");
            DateTime started = new DateTime();


            this.totalTasks = 0;
            while (famous.Next())
            {
                String name = famous.Get("Person");
                int    year = famous.GetInt("Year");

                CollectionWorker worker = new CollectionWorker(this, name,
                                                               year);
                worker.Call();

                this.totalTasks++;
            }


            long length = (DateTime.Now - started).Ticks;

            length /= 1000L;
            length /= 60;
            Console.WriteLine("Took " + length
                              + " minutes to collect training data from the Internet.");
            Console.WriteLine("Writing training file");
            WriteTrainingFile();
        }
Example #4
0
        /// <summary>
        /// Construct a loaded row.
        /// </summary>
        ///
        /// <param name="csv">The CSV file to use.</param>
        /// <param name="extra">The number of extra columns to add.</param>
        public LoadedRow(ReadCSV csv, int extra)
        {
            int count = csv.GetCount();

            _data = new String[count + extra];
            for (int i = 0; i < count; i++)
            {
                _data[i] = csv.Get(i);
            }
        }
Example #5
0
        private async void BeginLoadAsync()
        {
            tokenSource   = new CancellationTokenSource();
            BaseClassList = await ReadCSV.Get(Path, _progress, tokenSource.Token);

            if (BaseClassList.Count != 0)
            {
                ProgressMessage = "Loading completed";
            }

            await Task.Delay(1000);

            ProgressMessage = "Ready";
        }
        /// <summary>
        ///     Get the data for a specific column.
        /// </summary>
        /// <param name="name">The column to read.</param>
        /// <param name="csv">The CSV file to read from.</param>
        /// <returns>The column data.</returns>
        public String GetColumnData(String name, ReadCSV csv)
        {
            if (!_columnMapping.ContainsKey(name))
            {
                return(null);
            }

            BaseCachedColumn column = _columnMapping[name];

            if (!(column is FileData))
            {
                return(null);
            }

            var fd = (FileData)column;

            return(csv.Get(fd.Index));
        }
Example #7
0
        /// <inheritdoc />
        public string[] ReadLine()
        {
            if (_reader == null)
            {
                throw new EncogError("Please call rewind before reading the file.");
            }

            if (_reader.Next())
            {
                int len    = _reader.ColumnCount;
                var result = new string[len];
                for (int i = 0; i < result.Length; i++)
                {
                    result[i] = _reader.Get(i);
                }
                return(result);
            }
            _reader.Close();
            return(null);
        }
Example #8
0
 private void DetermineInputFieldValue(IInputField field, int index, bool headers)
 {
     if (field is InputFieldCSV)
     {
         var     fieldCSV = (InputFieldCSV)field;
         ReadCSV csv      = _csvMap[field];
         field.CurrentValueRaw = csv.Get(fieldCSV.ColumnName);
         try
         {
             field.CurrentValue = CSVFormatUsed.Parse((string)field.CurrentValueRaw);
         }
         catch (FormatException)
         {
             field.CurrentValue = double.NaN;
         }
     }
     else if (field is InputFieldMLDataSet)
     {
         var mlField = (InputFieldMLDataSet)field;
         MLDataFieldHolder holder = _dataSetFieldMap
                                    [field];
         IMLDataPair pair   = holder.Pair;
         int         offset = mlField.Offset;
         if (offset < pair.Input.Count)
         {
             field.CurrentValue    = pair.Input[offset];
             field.CurrentValueRaw = pair.Input[offset];
         }
         else
         {
             offset               -= pair.Input.Count;
             field.CurrentValue    = pair.Ideal[offset];
             field.CurrentValueRaw = pair.Ideal[offset];
         }
     }
     else
     {
         field.CurrentValueRaw = field.GetValue(index);
         field.CurrentValue    = (double)field.CurrentValueRaw;
     }
 }
        /// <summary>
        ///     Read the CSV file.
        /// </summary>
        private void ReadFile()
        {
            ReadCSV csv = null;

            try
            {
                csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, Format);

                ResetStatus();
                int row = 0;
                while (csv.Next() && !ShouldStop())
                {
                    UpdateStatus("Reading data");

                    foreach (BaseCachedColumn column  in  Columns)
                    {
                        if (column is FileData)
                        {
                            if (column.Input)
                            {
                                var    fd  = (FileData)column;
                                String str = csv.Get(fd.Index);
                                double d   = Format.Parse(str);
                                fd.Data[row] = d;
                            }
                        }
                    }
                    row++;
                }
            }
            finally
            {
                ReportDone("Reading data");
                if (csv != null)
                {
                    csv.Close();
                }
            }
        }
Example #10
0
        /// <summary>
        ///     Program entry point.
        /// </summary>
        /// <param name="app">Holds arguments and other info.</param>
        public void Execute(IExampleInterface app)
        {
            ErrorCalculation.Mode = ErrorCalculationMode.RMS;
            // Download the data that we will attempt to model.
            string filename = DownloadData(app.Args);

            // Define the format of the data file.
            // This area will change, depending on the columns and
            // format of the file that you are trying to model.
            var format = new CSVFormat('.', ' '); // decimal point and
            // space separated
            IVersatileDataSource source = new CSVDataSource(filename, true,
                                                            format);

            var data = new VersatileMLDataSet(source);

            data.NormHelper.Format = format;

            ColumnDefinition columnSSN = data.DefineSourceColumn("SSN",
                                                                 ColumnType.Continuous);
            ColumnDefinition columnDEV = data.DefineSourceColumn("DEV",
                                                                 ColumnType.Continuous);

            // Analyze the data, determine the min/max/mean/sd of every column.
            data.Analyze();

            // Use SSN & DEV to predict SSN. For time-series it is okay to have
            // SSN both as
            // an input and an output.
            data.DefineInput(columnSSN);
            data.DefineInput(columnDEV);
            data.DefineOutput(columnSSN);

            // Create feedforward neural network as the model type.
            // MLMethodFactory.TYPE_FEEDFORWARD.
            // You could also other model types, such as:
            // MLMethodFactory.SVM: Support Vector Machine (SVM)
            // MLMethodFactory.TYPE_RBFNETWORK: RBF Neural Network
            // MLMethodFactor.TYPE_NEAT: NEAT Neural Network
            // MLMethodFactor.TYPE_PNN: Probabilistic Neural Network
            var model = new EncogModel(data);

            model.SelectMethod(data, MLMethodFactory.TypeFeedforward);

            // Send any output to the console.
            model.Report = new ConsoleStatusReportable();

            // Now normalize the data. Encog will automatically determine the
            // correct normalization
            // type based on the model you chose in the last step.
            data.Normalize();

            // Set time series.
            data.LeadWindowSize = 1;
            data.LagWindowSize  = WindowSize;

            // Hold back some data for a final validation.
            // Do not shuffle the data into a random ordering. (never shuffle
            // time series)
            // Use a seed of 1001 so that we always use the same holdback and
            // will get more consistent results.
            model.HoldBackValidation(0.3, false, 1001);

            // Choose whatever is the default training type for this model.
            model.SelectTrainingType(data);

            // Use a 5-fold cross-validated train. Return the best method found.
            // (never shuffle time series)
            var bestMethod = (IMLRegression)model.Crossvalidate(5,
                                                                false);

            // Display the training and validation errors.
            Console.WriteLine(@"Training error: "
                              + model.CalculateError(bestMethod,
                                                     model.TrainingDataset));
            Console.WriteLine(@"Validation error: "
                              + model.CalculateError(bestMethod,
                                                     model.ValidationDataset));

            // Display our normalization parameters.
            NormalizationHelper helper = data.NormHelper;

            Console.WriteLine(helper.ToString());

            // Display the final model.
            Console.WriteLine(@"Final model: " + bestMethod);

            // Loop over the entire, original, dataset and feed it through the
            // model. This also shows how you would process new data, that was
            // not part of your training set. You do not need to retrain, simply
            // use the NormalizationHelper class. After you train, you can save
            // the NormalizationHelper to later normalize and denormalize your
            // data.
            source.Close();
            var csv  = new ReadCSV(filename, true, format);
            var line = new String[2];

            // Create a vector to hold each time-slice, as we build them.
            // These will be grouped together into windows.
            var     slice  = new double[2];
            var     window = new VectorWindow(WindowSize + 1);
            IMLData input  = helper.AllocateInputVector(WindowSize + 1);

            // Only display the first 100
            int stopAfter = 100;

            while (csv.Next() && stopAfter > 0)
            {
                var result = new StringBuilder();

                line[0] = csv.Get(2); // ssn
                line[1] = csv.Get(3); // dev
                helper.NormalizeInputVector(line, slice, false);

                // enough data to build a full window?
                if (window.IsReady())
                {
                    window.CopyWindow(((BasicMLData)input).Data, 0);
                    String  correct   = csv.Get(2); // trying to predict SSN.
                    IMLData output    = bestMethod.Compute(input);
                    String  predicted = helper
                                        .DenormalizeOutputVectorToString(output)[0];

                    result.Append(line);
                    result.Append(" -> predicted: ");
                    result.Append(predicted);
                    result.Append("(correct: ");
                    result.Append(correct);
                    result.Append(")");

                    Console.WriteLine(result.ToString());
                }

                // Add the normalized slice to the window. We do this just after
                // the after checking to see if the window is ready so that the
                // window is always one behind the current row. This is because
                // we are trying to predict next row.
                window.Add(slice);

                stopAfter--;
            }
            csv.Close();

            // Delete data file and shut down.
            File.Delete(filename);
            EncogFramework.Instance.Shutdown();
        }
Example #11
0
        /// <summary>
        /// Extract fields from a file into a numeric array for machine learning.
        /// </summary>
        ///
        /// <param name="analyst">The analyst to use.</param>
        /// <param name="headers">The headers for the input data.</param>
        /// <param name="csv">The CSV that holds the input data.</param>
        /// <param name="outputLength">The length of the returned array.</param>
        /// <param name="skipOutput">True if the output should be skipped.</param>
        /// <returns>The encoded data.</returns>
        public static double[] ExtractFields(EncogAnalyst analyst,
                                             CSVHeaders headers, ReadCSV csv,
                                             int outputLength, bool skipOutput)
        {
            var output      = new double[outputLength];
            int outputIndex = 0;

            foreach (AnalystField stat in analyst.Script.Normalize.NormalizedFields)
            {
                if (stat.Action == NormalizationAction.Ignore)
                {
                    continue;
                }

                if (stat.Output && skipOutput)
                {
                    continue;
                }

                int    index = headers.Find(stat.Name);
                String str   = csv.Get(index);

                // is this an unknown value?
                if (str.Equals("?") || str.Length == 0)
                {
                    IHandleMissingValues handler = analyst.Script.Normalize.MissingValues;
                    double[]             d       = handler.HandleMissing(analyst, stat);

                    // should we skip the entire row
                    if (d == null)
                    {
                        return(null);
                    }

                    // copy the returned values in place of the missing values
                    for (int i = 0; i < d.Length; i++)
                    {
                        output[outputIndex++] = d[i];
                    }
                }
                else
                {
                    // known value

                    if (stat.Action == NormalizationAction.Normalize)
                    {
                        double d = csv.Format.Parse(str.Trim());
                        d = stat.Normalize(d);
                        output[outputIndex++] = d;
                    }
                    else
                    {
                        double[] d = stat.Encode(str.Trim());

                        foreach (double element in d)
                        {
                            output[outputIndex++] = element;
                        }
                    }
                }
            }

            return(output);
        }
Example #12
0
        /// <summary>
        ///     Program entry point.
        /// </summary>
        /// <param name="app">Holds arguments and other info.</param>
        public void Execute(IExampleInterface app)
        {
            // Download the data that we will attempt to model.
            string irisFile = DownloadData(app.Args);

            // Define the format of the data file.
            // This area will change, depending on the columns and
            // format of the file that you are trying to model.
            IVersatileDataSource source = new CSVDataSource(irisFile, false,
                                                            CSVFormat.DecimalPoint);
            var data = new VersatileMLDataSet(source);

            data.DefineSourceColumn("sepal-length", 0, ColumnType.Continuous);
            data.DefineSourceColumn("sepal-width", 1, ColumnType.Continuous);
            data.DefineSourceColumn("petal-length", 2, ColumnType.Continuous);
            data.DefineSourceColumn("petal-width", 3, ColumnType.Continuous);

            // Define the column that we are trying to predict.
            ColumnDefinition outputColumn = data.DefineSourceColumn("species", 4,
                                                                    ColumnType.Nominal);

            // Analyze the data, determine the min/max/mean/sd of every column.
            data.Analyze();

            // Map the prediction column to the output of the model, and all
            // other columns to the input.
            data.DefineSingleOutputOthersInput(outputColumn);

            // Create feedforward neural network as the model type. MLMethodFactory.TYPE_FEEDFORWARD.
            // You could also other model types, such as:
            // MLMethodFactory.SVM:  Support Vector Machine (SVM)
            // MLMethodFactory.TYPE_RBFNETWORK: RBF Neural Network
            // MLMethodFactor.TYPE_NEAT: NEAT Neural Network
            // MLMethodFactor.TYPE_PNN: Probabilistic Neural Network
            var model = new EncogModel(data);

            model.SelectMethod(data, MLMethodFactory.TypeFeedforward);

            // Send any output to the console.
            model.Report = new ConsoleStatusReportable();

            // Now normalize the data.  Encog will automatically determine the correct normalization
            // type based on the model you chose in the last step.
            data.Normalize();

            // Hold back some data for a final validation.
            // Shuffle the data into a random ordering.
            // Use a seed of 1001 so that we always use the same holdback and will get more consistent results.
            model.HoldBackValidation(0.3, true, 1001);

            // Choose whatever is the default training type for this model.
            model.SelectTrainingType(data);

            // Use a 5-fold cross-validated train.  Return the best method found.
            var bestMethod = (IMLRegression)model.Crossvalidate(5, true);

            // Display the training and validation errors.
            Console.WriteLine(@"Training error: " + model.CalculateError(bestMethod, model.TrainingDataset));
            Console.WriteLine(@"Validation error: " + model.CalculateError(bestMethod, model.ValidationDataset));

            // Display our normalization parameters.
            NormalizationHelper helper = data.NormHelper;

            Console.WriteLine(helper.ToString());

            // Display the final model.
            Console.WriteLine(@"Final model: " + bestMethod);

            // Loop over the entire, original, dataset and feed it through the model.
            // This also shows how you would process new data, that was not part of your
            // training set.  You do not need to retrain, simply use the NormalizationHelper
            // class.  After you train, you can save the NormalizationHelper to later
            // normalize and denormalize your data.
            source.Close();
            var     csv   = new ReadCSV(irisFile, false, CSVFormat.DecimalPoint);
            var     line  = new String[4];
            IMLData input = helper.AllocateInputVector();

            while (csv.Next())
            {
                var result = new StringBuilder();
                line[0] = csv.Get(0);
                line[1] = csv.Get(1);
                line[2] = csv.Get(2);
                line[3] = csv.Get(3);
                String correct = csv.Get(4);
                helper.NormalizeInputVector(line, ((BasicMLData)input).Data, false);
                IMLData output     = bestMethod.Compute(input);
                String  irisChosen = helper.DenormalizeOutputVectorToString(output)[0];

                result.Append(line);
                result.Append(" -> predicted: ");
                result.Append(irisChosen);
                result.Append("(correct: ");
                result.Append(correct);
                result.Append(")");

                Console.WriteLine(result.ToString());
            }
            csv.Close();

            // Delete data file ande shut down.
            File.Delete(irisFile);
            EncogFramework.Instance.Shutdown();
        }
Example #13
0
        /// <summary>
        ///     Perform the analysis.
        /// </summary>
        /// <param name="target">The Encog analyst object to analyze.</param>
        public void Process(EncogAnalyst target)
        {
            int       count     = 0;
            CSVFormat csvFormat = ConvertStringConst
                                  .ConvertToCSVFormat(_format);
            var csv = new ReadCSV(_filename, _headers, csvFormat);

            // pass one, calculate the min/max
            while (csv.Next())
            {
                if (_fields == null)
                {
                    GenerateFields(csv);
                }

                for (int i = 0; i < csv.ColumnCount; i++)
                {
                    if (_fields != null)
                    {
                        _fields[i].Analyze1(csv.Get(i));
                    }
                }
                count++;
            }

            if (count == 0)
            {
                throw new AnalystError("Can't analyze file, it is empty.");
            }

            if (_fields != null)
            {
                foreach (AnalyzedField field in _fields)
                {
                    field.CompletePass1();
                }
            }

            csv.Close();

            // pass two, standard deviation
            csv = new ReadCSV(_filename, _headers, csvFormat);

            while (csv.Next())
            {
                for (int i = 0; i < csv.ColumnCount; i++)
                {
                    if (_fields != null)
                    {
                        _fields[i].Analyze2(csv.Get(i));
                    }
                }
            }

            if (_fields != null)
            {
                foreach (AnalyzedField field in _fields)
                {
                    field.CompletePass2();
                }
            }

            csv.Close();

            String str = _script.Properties.GetPropertyString(
                ScriptProperties.SetupConfigAllowedClasses) ?? "";

            bool allowInt  = str.Contains("int");
            bool allowReal = str.Contains("real") ||
                             str.Contains("double");
            bool allowString = str.Contains("string");

            // remove any classes that did not qualify
            foreach (AnalyzedField field in _fields)
            {
                if (field.Class)
                {
                    if (!allowInt && field.Integer)
                    {
                        field.Class = false;
                    }

                    if (!allowString && (!field.Integer && !field.Real))
                    {
                        field.Class = false;
                    }

                    if (!allowReal && field.Real && !field.Integer)
                    {
                        field.Class = false;
                    }
                }
            }

            // merge with existing
            if ((target.Script.Fields != null) &&
                (_fields.Length == target.Script.Fields.Length))
            {
                for (int i = 0; i < _fields.Length; i++)
                {
                    // copy the old field name
                    _fields[i].Name = target.Script.Fields[i].Name;

                    if (_fields[i].Class)
                    {
                        IList <AnalystClassItem> t = _fields[i].AnalyzedClassMembers;
                        IList <AnalystClassItem> s = target.Script.Fields[i].ClassMembers;

                        if (s.Count == t.Count)
                        {
                            for (int j = 0; j < s.Count; j++)
                            {
                                if (t[j].Code.Equals(s[j].Code))
                                {
                                    t[j].Name = s[j].Name;
                                }
                            }
                        }
                    }
                }
            }

            // now copy the fields
            var df = new DataField[_fields.Length];

            for (int i_4 = 0; i_4 < df.Length; i_4++)
            {
                df[i_4] = _fields[i_4].FinalizeField();
            }

            target.Script.Fields = df;
        }
Example #14
0
        /// <summary>
        ///     Private constructor.
        /// </summary>
        private PropertyConstraints()
        {
            _data = new Dictionary <String, List <PropertyEntry> >();
            try
            {
                Stream mask0 = ResourceLoader.CreateStream("Encog.Resources.analyst.csv");
                var    csv   = new ReadCSV(mask0, false, CSVFormat.EgFormat);

                while (csv.Next())
                {
                    String sectionStr = csv.Get(0);
                    String nameStr    = csv.Get(1);
                    String typeStr    = csv.Get(2);

                    // determine type
                    PropertyType t;
                    if ("boolean".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeBoolean;
                    }
                    else if ("real".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeDouble;
                    }
                    else if ("format".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeFormat;
                    }
                    else if ("int".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeInteger;
                    }
                    else if ("list-string".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeListString;
                    }
                    else if ("string".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeString;
                    }
                    else
                    {
                        throw new AnalystError("Unknown type constraint: "
                                               + typeStr);
                    }

                    var entry = new PropertyEntry(t, nameStr,
                                                  sectionStr);
                    List <PropertyEntry> list;

                    if (_data.ContainsKey(sectionStr))
                    {
                        list = _data[sectionStr];
                    }
                    else
                    {
                        list = new List <PropertyEntry>();
                        _data[sectionStr] = list;
                    }

                    list.Add(entry);
                }

                csv.Close();
                mask0.Close();
            }
            catch (IOException e)
            {
                throw new EncogError(e);
            }
        }
        /// <summary>
        ///     Analyze the input file.
        /// </summary>
        /// <param name="input">The input file.</param>
        /// <param name="headers">True, if there are headers.</param>
        /// <param name="format">The format of the CSV data.</param>
        public virtual void Analyze(FileInfo input, bool headers,
                                    CSVFormat format)
        {
            ResetStatus();
            InputFilename      = input;
            ExpectInputHeaders = headers;
            Format             = format;
            _columnMapping.Clear();
            _columns.Clear();

            // first count the rows
            TextReader reader = null;

            try
            {
                int recordCount = 0;
                reader = new StreamReader(InputFilename.OpenRead());
                while (reader.ReadLine() != null)
                {
                    UpdateStatus(true);
                    recordCount++;
                }

                if (headers)
                {
                    recordCount--;
                }
                RecordCount = recordCount;
            }
            catch (IOException ex)
            {
                throw new QuantError(ex);
            }
            finally
            {
                ReportDone(true);
                if (reader != null)
                {
                    try
                    {
                        reader.Close();
                    }
                    catch (IOException e)
                    {
                        throw new QuantError(e);
                    }
                }
                InputFilename      = input;
                ExpectInputHeaders = headers;
                Format             = format;
            }

            // now analyze columns
            ReadCSV csv = null;

            try
            {
                csv = new ReadCSV(input.ToString(), headers, format);
                if (!csv.Next())
                {
                    throw new QuantError("File is empty");
                }

                for (int i = 0; i < csv.ColumnCount; i++)
                {
                    String name;

                    if (headers)
                    {
                        name = AttemptResolveName(csv.ColumnNames[i]);
                    }
                    else
                    {
                        name = "Column-" + (i + 1);
                    }

                    // determine if it should be an input/output field

                    String str = csv.Get(i);

                    bool io = false;

                    try
                    {
                        Format.Parse(str);
                        io = true;
                    }
                    catch (FormatException ex)
                    {
                        EncogLogging.Log(ex);
                    }

                    AddColumn(new FileData(name, i, io, io));
                }
            }
            finally
            {
                if (csv != null)
                {
                    csv.Close();
                }
                Analyzed = true;
            }
        }