Example #1
0
        public IEnumerable <Prediction> PredictTopN(RawDrawing drawing, int predictionsCount, double minActivation)
        {
            if (Evaluator == null)
            {
                return(null);
            }

            var normDrawing = dataProcessor.Normalize(drawing);
            var img         = rasterizer.Rasterize(normDrawing, TrainSettings.InputImgSizePx, TrainSettings.PenThicknessPerc / 100f, true, false);
            var input       = inputConvertor.ImageToVector(img);

            return(Evaluator.PredictTopN(input, predictionsCount, minActivation));
        }
Example #2
0
        public Matrix <double> CreateInputsMatrix(IEnumerable <RawDrawing> rawDrawings, Rasterizer rasterizer, bool normalize)
        {
            Contract.Requires(rawDrawings.Count() > 0);
            var inputVectors = new List <Vector <double> >();

            using (var img = new Bitmap(rasterizer.ImageSize, rasterizer.ImageSize, PixelFormat.Format24bppRgb)) {
                int cols = img.Width * img.Height;
                foreach (var drawing in rawDrawings)
                {
                    RawDrawing rd = normalize ? dataProcessor.Normalize(drawing) : drawing;
                    rasterizer.Rasterize(img, rd);
                    inputVectors.Add(ImageToVector(img));
                }
            }

            return(DenseMatrix.OfRowVectors(inputVectors));
        }