Example #1
0
 public DecisionTreeDNANode(int p_num_inputs, Range <float> p_threshold_range, int p_num_outputs, Range <float> p_outputs_range)
 {
     m_input_index   = RandomCalc.Rand(new Range <int>(0, p_num_inputs - 1));
     m_min_input     = RandomCalc.Rand(p_threshold_range);
     m_max_input     = RandomCalc.Rand(new Range <float>(m_min_input, p_threshold_range.Max));
     m_output_values = ArrayCalc.functionInitialize(p_num_outputs, () => { return(RandomCalc.Rand(p_outputs_range)); });
 }
Example #2
0
            ///<summary>Returns a random object with fitter objects more likely to be chosen.</summary>
            public T getRandomObject()
            {
                float indexNum = Mathf.Pow(RandomCalc.Rand(new Range <float>(0f, 1f)), 2);
                int   index    = (int)Mathf.Round(indexNum * (m_objects.Count - 1));

                return(m_objects[index].Object);
            }
    void spawnResource()
    {
        GameObject obj = Instantiate(m_resource_prefab, Vector3Calc.randomDirection() * 8f, Quaternion.identity);

        obj.GetComponent <Resource>().Initalize(RandomCalc.Rand(new Range <float>(10f, 100f)));
        ObjectLogger.log(obj, "RESOURCE");
    }
Example #4
0
                public Gene mutate()
                {
                    Gene clone = this.Clone();

                    for (int i = 0; i < m_mutation_iterations; i++)
                    {
                        int index = ArrayCalc.randomIndex(clone.m_genes);
                        clone.m_genes[index] += RandomCalc.Rand(m_mutation_range);
                    }

                    return(clone);
                }
Example #5
0
                public Gene(int p_number, Range <float> p_range, int p_mutation_iterations, Range <float> p_mutation_range)
                {
                    m_genes = new float[p_number];

                    for (int i = 0; i < m_genes.Length; i++)
                    {
                        m_genes[i] = RandomCalc.Rand(p_range);
                    }

                    m_mutation_iterations = p_mutation_iterations;
                    m_mutation_range      = p_mutation_range;
                }
Example #6
0
                public DecisionTreeDNANode mutate(int p_num_inputs, Range <float> p_mutation_mult)
                {
                    int mut_input_index = RandomCalc.Rand(new Range <int>(0, p_num_inputs - 1));

                    float mut_min_input = m_min_input * RandomCalc.Rand(p_mutation_mult);
                    float mut_max_input = m_max_input * RandomCalc.Rand(p_mutation_mult);

                    if (mut_max_input < mut_min_input)
                    {
                        mut_max_input = mut_min_input;
                    }

                    float[] mut_output_values = ArrayCalc.shallowClone(m_output_values);
                    for (int i = 0; i < mut_output_values.Length; i++)
                    {
                        mut_output_values[i] *= RandomCalc.Rand(p_mutation_mult);
                    }

                    return(new DecisionTreeDNANode(mut_input_index, mut_min_input, mut_max_input, mut_output_values));
                }
 public ADNA <DecisionNetDNA <T> > randomInstance()
 {
     return(new DecisionNetDNA <T>(m_id, m_inputs, m_outputs, Matrix <float> .Build.Dense(m_inputs.Length, m_outputs.Length, (i, j) => { return RandomCalc.Rand(m_weight_range); }), m_mutation_multiplier));
 }
                public NeuralNetDNA(int p_id, DInputFactory <T>[] p_inputs, DOutputFactory <T>[] p_outputs, int p_hidden_number, int p_hidden_size,
                                    Range <float> p_weight_range, Range <float> p_mutation_multiplier)
                {
                    m_id      = p_id;
                    m_inputs  = ArrayCalc.shallowClone(p_inputs);
                    m_outputs = ArrayCalc.shallowClone(p_outputs);


                    m_weights = new Matrix <float> [p_hidden_number + 1];

                    m_weights[0] = Matrix <float> .Build.Dense(m_inputs.Length, p_hidden_size, (i, j) => { return(RandomCalc.Rand(p_weight_range)); });

                    for (int i = 1; i < m_weights.Length - 1; i++)
                    {
                        m_weights[i] = Matrix <float> .Build.Dense(p_hidden_size, p_hidden_size, (x, y) => { return(RandomCalc.Rand(p_weight_range)); });
                    }

                    m_weights[m_weights.Length - 1] = Matrix <float> .Build.Dense(p_hidden_size, m_outputs.Length, (i, j) => { return(RandomCalc.Rand(p_weight_range)); });

                    m_mutation_multiplier = p_mutation_multiplier;
                }