Example #1
0
        /// <summary>
        /// Performs training iteration.
        /// </summary>
        public void Iteration()
        {
            //Next epoch
            ++_epoch;
            //Noise intensity
            double intensity = _alphas[Math.Min(_maxEpoch, _epoch) - 1];
            //Adjusted predictors
            Matrix predictors = PreparePredictors((double)intensity);
            //Decomposition
            QRD decomposition = new QRD(predictors);

            //New waights
            double[] newWaights = new double[_net.NumOfWeights];
            //Regression for each output neuron
            for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++)
            {
                //Regression
                Matrix solution = decomposition.Solve(_outputSingleColMatrixCollection[outputIdx]);
                //Store weights
                //Input weights
                for (int i = 0; i < solution.NumOfRows - 1; i++)
                {
                    newWaights[outputIdx * _net.NumOfInputValues + i] = solution.Data[i][0];
                }
                //Bias weight
                newWaights[_net.NumOfOutputValues * _net.NumOfInputValues + outputIdx] = solution.Data[solution.NumOfRows - 1][0];
            }
            //Set new weights and compute error
            _net.SetWeights(newWaights);
            _mse = _net.ComputeBatchErrorStat(_inputVectorCollection, _outputVectorCollection).MeanSquare;
            return;
        }
Example #2
0
        /// <summary>
        /// Performs training iteration.
        /// </summary>
        public void Iteration()
        {
            //Next epoch
            ++_epoch;
            //Noise intensity
            double intensity = _alphas[Math.Min(_maxEpoch, _epoch) - 1];
            //Adjusted predictors
            Matrix predictors = PreparePredictors((double)intensity);
            //Decomposition
            QRD  decomposition = null;
            bool useableQRD    = true;

            try
            {
                //Try to create QRD. Any exception signals numerical unstability
                decomposition = new QRD(predictors);
            }
            catch
            {
                //Creation of QRD object throws exception. QRD object is not ready for use.
                useableQRD = false;
                if (_epoch == 1)
                {
                    //No previous successful epoch so stop training
                    throw;
                }
            }
            if (useableQRD)
            {
                //QRD is ready for use (low probability of numerical unstability)
                //New weights
                double[] newWeights = new double[_net.NumOfWeights];
                //Regression for each output neuron
                for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++)
                {
                    //Regression
                    Matrix solution = decomposition.Solve(_outputSingleColMatrixCollection[outputIdx]);
                    //Store weights
                    //Input weights
                    for (int i = 0; i < solution.NumOfRows - 1; i++)
                    {
                        newWeights[outputIdx * _net.NumOfInputValues + i] = solution.Data[i][0];
                    }
                    //Bias weight
                    newWeights[_net.NumOfOutputValues * _net.NumOfInputValues + outputIdx] = solution.Data[solution.NumOfRows - 1][0];
                }
                //Set new weights and compute error
                _net.SetWeights(newWeights);
                _mse = _net.ComputeBatchErrorStat(_inputVectorCollection, _outputVectorCollection).MeanSquare;
            }
            return;
        }
Example #3
0
        /// <summary>
        /// Performs training iteration.
        /// </summary>
        public bool Iteration()
        {
            //Fetch next noise intensity
            double newMaxNoise = _maxNoiseSeeker.Next;

            //Check continue conditions
            if (AttemptEpoch == MaxAttemptEpoch || Math.Abs(_currMaxNoise - newMaxNoise) < StopNoiseDifference)
            {
                //Try new attempt
                if (!NextAttempt())
                {
                    //Next attempt is not available
                    return(false);
                }
                else
                {
                    newMaxNoise = _maxNoiseSeeker.Next;
                }
            }
            //Next epoch
            ++AttemptEpoch;
            _currMaxNoise = newMaxNoise;
            InfoMessage   = $"maxNoise={_currMaxNoise.ToString(CultureInfo.InvariantCulture)}";
            //Adjusted predictors
            Matrix predictors = PreparePredictors(_currMaxNoise);
            //Decomposition
            QRD  decomposition = null;
            bool useableQRD    = true;

            try
            {
                //Try to create QRD. Any exception signals numerical unstability
                decomposition = new QRD(predictors);
            }
            catch
            {
                //Creation of QRD object throws exception. QRD object is not ready for use.
                useableQRD = false;
                if (AttemptEpoch == 1)
                {
                    //No previous successful epoch so stop training
                    throw;
                }
            }
            if (useableQRD)
            {
                //QRD is ready for use (low probability of numerical unstability)
                //New weights
                double[] newWeights = new double[_net.NumOfWeights];
                //Regression for each output neuron
                for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++)
                {
                    //Regression
                    Matrix solution = decomposition.Solve(_outputSingleColMatrixCollection[outputIdx]);
                    //Store weights
                    //Input weights
                    for (int i = 0; i < solution.NumOfRows - 1; i++)
                    {
                        newWeights[outputIdx * _net.NumOfInputValues + i] = solution.Data[i][0];
                    }
                    //Bias weight
                    newWeights[_net.NumOfOutputValues * _net.NumOfInputValues + outputIdx] = solution.Data[solution.NumOfRows - 1][0];
                }
                //Set new weights and compute error
                _net.SetWeights(newWeights);
                MSE = _net.ComputeBatchErrorStat(_inputVectorCollection, _outputVectorCollection).MeanSquare;
            }
            _maxNoiseSeeker.ProcessError(MSE);
            return(true);
        }
Example #4
0
        //Methods
        public void Run()
        {
            //Linear algebra test
            double[] flatData =
            {
                0.2,      5,  17.3,   1.01,     54,     7,
                2.2,    5.5, 12.13,  11.57,   5.71,   -85,
                -70.1,   15, -18.3,    0.3,     42, -6.25,
                0.042,    1,  7.75, -81.01, -21.29,  5.44,
                0.1,      4,  -4.3,  18.01,   7.12, -3.14,
                -80.1, 24.4,   4.3,  12.03,  2.789, -13
            };
            Matrix testM = new Matrix(6, 6, flatData);

            /*
             * //Inversion test
             * Matrix resultM = new Matrix(testM);
             * resultM.SingleThreadInverse();
             */
            /*
             * //Transpose test
             * Matrix resultM = testM.Transpose();
             */

            /*
             * //Multiply test
             * Matrix resultM = Matrix.Multiply(testM, testM);
             * for (int i = 0; i < resultM.NumOfRows; i++)
             * {
             *  Console.WriteLine($"{resultM.Data[i][0]}; {resultM.Data[i][1]}; {resultM.Data[i][2]}; {resultM.Data[i][3]}; {resultM.Data[i][4]}; {resultM.Data[i][5]}");
             * }
             */



            ;



            int numOfweights = 4;
            int xIdx, dIdx = 0;

            double[][] data = new double[5][];
            data[dIdx]         = new double[numOfweights];
            xIdx               = -1;
            data[dIdx][++xIdx] = 1; //Bias
            data[dIdx][++xIdx] = 2;
            data[dIdx][++xIdx] = 1;
            data[dIdx][++xIdx] = 3;
            ++dIdx;
            data[dIdx]         = new double[numOfweights];
            xIdx               = -1;
            data[dIdx][++xIdx] = 1; //Bias
            data[dIdx][++xIdx] = 1;
            data[dIdx][++xIdx] = 3;
            data[dIdx][++xIdx] = -3;
            ++dIdx;
            data[dIdx]         = new double[numOfweights];
            xIdx               = -1;
            data[dIdx][++xIdx] = 1; //Bias
            data[dIdx][++xIdx] = -2;
            data[dIdx][++xIdx] = 4;
            data[dIdx][++xIdx] = 4;
            ++dIdx;
            data[dIdx]         = new double[numOfweights];
            xIdx               = -1;
            data[dIdx][++xIdx] = 1; //Bias
            data[dIdx][++xIdx] = -5;
            data[dIdx][++xIdx] = 7;
            data[dIdx][++xIdx] = 6;
            ++dIdx;
            data[dIdx]         = new double[numOfweights];
            xIdx               = -1;
            data[dIdx][++xIdx] = 1; //Bias
            data[dIdx][++xIdx] = 1;
            data[dIdx][++xIdx] = 12;
            data[dIdx][++xIdx] = 5;

            Matrix M       = new Matrix(data, true);
            Vector desired = new Vector(5);

            dIdx = -1;
            desired.Data[++dIdx] = 8;
            desired.Data[++dIdx] = 13;
            desired.Data[++dIdx] = 5;
            desired.Data[++dIdx] = 7;
            desired.Data[++dIdx] = 10;

            Vector weights = Matrix.RidgeRegression(M, desired, 0);

            //Display results
            for (int i = 0; i < data.Length; i++)
            {
                double result = 0;
                for (int j = 0; j < weights.Length; j++)
                {
                    result += data[i][j] * weights[j];
                }
                Console.WriteLine($"Computed {result}, Desired {desired.Data[i]}");
            }
            for (int i = 0; i < weights.Length; i++)
            {
                Console.WriteLine($"Weight[{i}] = {weights[i]}");
            }
            Console.WriteLine();


            //QRD
            QRD    decomposition = new QRD(M);
            Matrix B             = new Matrix(desired.Length, 1, desired.Data);
            Matrix W             = decomposition.Solve(B);

            //Display results
            for (int i = 0; i < data.Length; i++)
            {
                double result = 0;
                for (int j = 0; j < W.Data.Length; j++)
                {
                    result += data[i][j] * W.Data[j][0];
                }
                Console.WriteLine($"Computed {result}, Desired {desired.Data[i]}");
            }
            for (int i = 0; i < W.Data.Length; i++)
            {
                Console.WriteLine($"Weight[{i}] = {W.Data[i][0]}");
            }



            ;



            //TimeSeriesGenerator.SaveTimeSeriesToCsvFile("MackeyGlass_big.csv", "Value", TimeSeriesGenerator.GenMackeyGlassTimeSeries(16000), CultureInfo.InvariantCulture);
            MackeyGlassGeneratorSettings modSettings = new MackeyGlassGeneratorSettings(18, 0.1, 0.2);
            IGenerator generator = new MackeyGlassGenerator(modSettings);

            int steps = 100;

            for (int i = 0; i < steps; i++)
            {
                Console.WriteLine(generator.Next());
            }
            Console.ReadLine();
            generator.Reset();
            for (int i = 0; i < steps; i++)
            {
                Console.WriteLine(generator.Next());
            }
            Console.ReadLine();

            ///*
            SimpleIFSettings settings = new SimpleIFSettings(1,
                                                             new RandomValueSettings(15, 15),
                                                             new RandomValueSettings(0.05, 0.05),
                                                             new RandomValueSettings(5, 5),
                                                             new RandomValueSettings(20, 20),
                                                             0
                                                             );
            IActivationFunction af = ActivationFactory.Create(settings, new Random(0));

            //*/
            TestActivation(af, 800, 0.15, 10, 600);
            return;
        }