Example #1
0
        public void PsiStoreStreamReaderLargeStream()
        {
            var count = 10;
            var name  = nameof(this.PsiStoreStreamReaderLargeStream);
            var size  = 10240;
            var bytes = new byte[size];

            using (var p = Pipeline.Create("write"))
            {
                var writeStore = PsiStore.Create(p, name, this.path);
                var seq        = Generators.Sequence(p, 0, i => i + 1, count, TimeSpan.FromTicks(1));
                var big        = seq.Select(i => bytes.Select(_ => i).ToArray());
                seq.Write("seq", writeStore);
                big.Write("big", writeStore, largeMessages: true);
                p.Run();
            }

            // now replay the contents and verify we get something
            var index = new List <Func <IStreamReader, int[]> >();

            // now read using the store stream reader
            using (var reader = new PsiStoreStreamReader(name, this.path))
            {
                reader.OpenStreamIndex <int[]>("big", (ie, e) => index.Add(ie));
                reader.ReadAll(ReplayDescriptor.ReplayAll);

                Assert.AreEqual(count, index.Count());
                var probe  = count / 2;
                var entry  = index[probe];
                var result = entry(reader);
                Assert.AreEqual(result.Sum(x => x), probe * size);
            }
        }
Example #2
0
        public void AudioBuffer_Persist()
        {
            byte[]      rawBytes = new byte[] { 1, 2, 3, 4, 5, 6 };
            var         wf       = WaveFormatEx.Create(WaveFormatTag.WAVE_FORMAT_APTX, 16000, 16, 2, 0, 16000);
            AudioBuffer buffer   = new AudioBuffer(rawBytes, wf);
            AudioBuffer bresult  = default(AudioBuffer);

            var p1    = Pipeline.Create();
            var store = PsiStore.Create(p1, "audio", null);

            Generators.Return(p1, buffer).Write("audio", store);
            p1.RunAsync();

            var p2     = Pipeline.Create();
            var store2 = PsiStore.Open(p2, "audio", null);

            store2.OpenStream <AudioBuffer>("audio").Do(b => bresult = b);
            p2.RunAsync();
            System.Threading.Thread.Sleep(100);
            p1.Dispose();
            p2.Dispose();

            Assert.AreEqual(6, bresult.Length);
            Assert.AreEqual(6, bresult.Data.Length);
            Assert.AreEqual(wf, bresult.Format);
            CollectionAssert.AreEqual(rawBytes, bresult.Data);
        }
Example #3
0
 private static void GenerateTestStore(string storeName, string storePath)
 {
     using var p = Pipeline.Create();
     var store = PsiStore.Create(p, storeName, storePath);
     var root = Generators.Sequence(p, 0, i => i + 1, 10, TimeSpan.FromTicks(1)).Write("Root", store);
     p.Run();
 }
Example #4
0
        public void PsiStoreStreamReader()
        {
            var count  = 100;
            var before = new Envelope[count];
            var after  = new Envelope[count];
            var name   = nameof(this.PsiStoreStreamReader);

            using (var p = Pipeline.Create("write"))
            {
                var writeStore = PsiStore.Create(p, name, this.path);
                var seq        = Generators.Sequence(p, 0, i => i + 1, count, TimeSpan.FromTicks(1));
                seq.Write("seq", writeStore);
                seq.Do((m, e) => before[m] = e);
                p.Run();
            }

            // now read using the store stream reader
            using (var reader = new PsiStoreStreamReader(name, this.path))
            {
                reader.OpenStream <int>("seq", (s, e) => after[s] = e);
                reader.ReadAll(ReplayDescriptor.ReplayAll);
            }

            for (int i = 0; i < count; i++)
            {
                Assert.AreEqual(before[i], after[i]);
            }
        }
Example #5
0
        /// <summary>
        /// Builds and runs a webcam pipeline and records the data to a Psi store.
        /// </summary>
        /// <param name="pathToStore">The path to directory where store should be saved.</param>
        public static void RecordAudioVideo(string pathToStore)
        {
            // Create the pipeline object.
            using (Pipeline pipeline = Pipeline.Create())
            {
                // Register an event handler to catch pipeline errors
                pipeline.PipelineExceptionNotHandled += Pipeline_PipelineException;

                // Register an event handler to be notified when the pipeline completes
                pipeline.PipelineCompleted += Pipeline_PipelineCompleted;

                // Create store
                var store = PsiStore.Create(pipeline, ApplicationName, pathToStore);

                // Create our webcam
                var webcam = new MediaCapture(pipeline, 1920, 1080, 30);

                // Create the AudioCapture component to capture audio from the default device in 16 kHz 1-channel
                IProducer <AudioBuffer> audioInput = new AudioCapture(pipeline, WaveFormat.Create16kHz1Channel16BitPcm());

                var images = webcam.Out.EncodeJpeg(90, DeliveryPolicy.LatestMessage).Out;

                // Attach the webcam's image output to the store. We will write the images to the store as compressed JPEGs.
                images.Write("Image", store, true, DeliveryPolicy.LatestMessage);

                // Attach the audio input to the store
                audioInput.Out.Write("Audio", store, true, DeliveryPolicy.LatestMessage);

                // Run the pipeline
                pipeline.RunAsync();

                Console.WriteLine("Press any key to finish recording");
                Console.ReadKey();
            }
        }
        /// <summary>
        /// Method that generates a store for cross-serialization tests.
        /// </summary>
        /// <remarks>
        /// This method will be invoked in a separate process by the <see cref="CrossFrameworkDeserialize"/>
        /// test method to generate a store to test deserialization across different .NET frameworks.
        /// </remarks>
        public void CrossFrameworkSerialize()
        {
            int    intValue    = 0x7777AAA;
            byte   byteValue   = 0xBB;
            bool   boolValue   = true;
            short  shortValue  = 0x7CDD;
            long   longValue   = 0x77777777EEEEEEEE;
            char   charValue   = 'G';
            string stringValue = "This is a test.";
            double doubleValue = Math.PI;
            float  floatValue  = -1.234f;

            float[]       floatArray = new[] { 0.1f, 2.3f };
            List <string> stringList = new List <string> {
                "one", "two"
            };
            ArraySegment <string>  stringArraySegment = new ArraySegment <string>(new[] { "aaa", "bbb", "ccc" }, 1, 2);
            Queue <TimeSpan>       queue       = new Queue <TimeSpan>(new[] { TimeSpan.Zero, TimeSpan.FromSeconds(1) });
            EqualityComparer <int> intComparer = EqualityComparer <int> .Default;
            Tuple <long, string>   tuple       = Tuple.Create(0x77777777EEEEEEEE, "This is a tuple.");

            (DateTime, Stack <int>)valueTuple = (new DateTime(2020, 1, 2), new Stack <int>(new[] { 33, 782 }));
            Array                    intArray     = new[] { 0, 3 };
            ICollection              stringArray  = new[] { "three", "four" };
            IEqualityComparer        enumComparer = EqualityComparer <DayOfWeek> .Default;
            Dictionary <string, int> dictionary   = new Dictionary <string, int> {
                { "one", 1 }, { "two", 2 }
            };

            using (var p = Pipeline.Create())
            {
                var store = PsiStore.Create(p, "Store1", this.testPath);
                Generators.Return(p, intValue).Write("int", store);
                Generators.Return(p, byteValue).Write("byte", store);
                Generators.Return(p, boolValue).Write("bool", store);
                Generators.Return(p, shortValue).Write("short", store);
                Generators.Return(p, longValue).Write("long", store);
                Generators.Return(p, charValue).Write("char", store);
                Generators.Return(p, stringValue).Write("string", store);
                Generators.Return(p, doubleValue).Write("double", store);
                Generators.Return(p, floatValue).Write("float", store);
                Generators.Return(p, floatArray).Write("floatArray", store);
                Generators.Return(p, stringList).Write("stringList", store);
                Generators.Return(p, stringArraySegment).Write("stringArraySegment", store);
                Generators.Return(p, queue).Write("queue", store);
                Generators.Return(p, intComparer).Write("intComparer", store);
                Generators.Return(p, tuple).Write("tuple", store);
                Generators.Return(p, valueTuple).Write("dateStackTuple", store);
                Generators.Return(p, intArray).Write("intArray", store);
                Generators.Return(p, stringArray).Write("stringArray", store);
                Generators.Return(p, enumComparer).Write("enumComparer", store);
                Generators.Return(p, dictionary).Write("dictionary", store);

                p.Run();
            }

            // retain test store for cross-framework tests to run against after this process exits
            this.cleanupTestFolder = false;
        }
Example #7
0
        /// <summary>
        /// Create a data store to log stream data to. A data store may be persisted on disk (if outputLogPath is defined),
        /// or it may be an in-memory volatile store. The latter is only required if we are visualizing live data, and
        /// only if we are not already logging data to a persisted store.
        /// </summary>
        /// <param name="pipeline">The Psi pipeline associated with the store.</param>
        /// <param name="outputLogPath">The path to a folder in which a persistent store will be created.</param>
        /// <returns>The store Exporter object if a store was successfully created.</returns>
        private static Exporter CreateDataStore(Pipeline pipeline, string outputLogPath = null)
        {
            // If this is a persisted store, use the application name as the store name. Otherwise, generate
            // a unique temporary name for the volatile store only if we are visualizing live data.
            string dataStoreName = (outputLogPath != null) ? Program.AppName : null;

            // Create the store only if it is needed (logging to disk).
            return((dataStoreName != null) ? PsiStore.Create(pipeline, dataStoreName, outputLogPath) : null);
        }
Example #8
0
#pragma warning disable IDE0060 // Remove unused parameter
        static void Main(string[] args)
#pragma warning restore IDE0060 // Remove unused parameter
        {
            var storeName = ConfigurationManager.AppSettings["PsiStoreName"];
            var storePath = ConfigurationManager.AppSettings["PsiStorePath"];

            using var msPipe = Pipeline.Create(deliveryPolicy: DeliveryPolicy.LatestMessage);
            var storeRSG = PsiStore.Create(msPipe, storeName, storePath);

            RealSenseGenerator rsg = new RealSenseGenerator(msPipe);

            rsg.OutDepthImage.Write(nameof(rsg.OutDepthImage), storeRSG);
            rsg.OutDepthImageColorized.Write(nameof(rsg.OutDepthImageColorized), storeRSG);
            rsg.OutRBGImage.Write(nameof(rsg.OutRBGImage), storeRSG);

            var subKey = ConfigurationManager.AppSettings["CognitiveSubKey"];
            var region = ConfigurationManager.AppSettings["CognitiveRegion"];

            VisualFeatureTypes[] featViz =
            {
                VisualFeatureTypes.Objects
            };
            ImageAnalyzerConfiguration zerConfig = new ImageAnalyzerConfiguration(
                subKey,
                region,
                featViz
                );
            ImageAnalyzer zer = new ImageAnalyzer(msPipe, zerConfig);

            rsg.OutRBGImage
            .Where(shImg => shImg != null && shImg.Resource != null)
            .PipeTo(zer.In);
            zer.Out
            .ExtractDetectedObjects()
            .Write("DetectedObjects.AllFeatures", storeRSG)
            .Select(tupleList => tupleList.Count)
            .Write("DetectedObjects.Count", storeRSG);

            msPipe.RunAsync();
            Console.WriteLine("Press any key to exit...");
            Console.ReadKey();
        }
Example #9
0
        public void Enumerables()
        {
            try
            {
                using (var p = Pipeline.Create())
                {
                    var store = PsiStore.Create(p, "Store", null);
                    Generators.Return(p, new double[] { 1, 2, 3 }).Select(l => l.Select(d => d + 1)).Write("Test", store);
                    p.Run();
                }
            }
            catch (AggregateException ex)
            {
                Assert.AreEqual(1, ex.InnerExceptions.Count);
                Assert.IsTrue(ex.InnerExceptions[0].GetType() == typeof(NotSupportedException));
                Assert.IsTrue(ex.InnerExceptions[0].Message.StartsWith("Cannot clone Func"));
                return;
            }

            Assert.Fail("Should have thrown above");
        }
        private dynamic InstanceToDynamic <T>(T instance)
        {
            // Rube Goldberg machine to convert instance to dynamic by
            // writing to a store (typed) and reading back as dynamic
            using (var p = Pipeline.Create())
            {
                var gen      = Generators.Return(p, instance);
                var exporter = PsiStore.Create(p, "Test", this.path);
                exporter.Write(gen.Out, "Data", true);
                p.Run();
            }

            using (var p = Pipeline.Create())
            {
                var importer = PsiStore.Open(p, "Test", this.path);
                var data     = importer.OpenDynamicStream("Data");
                var result   = data.ToEnumerable();
                p.Run();
                return(result.First());
            }
        }
        /// <summary>
        /// Method that generates a store for cross-serialization tests.
        /// </summary>
        /// <remarks>
        /// This method will be invoked in a separate process by the <see cref="CrossFrameworkDeserializeMembers"/>
        /// test method to generate a store to test deserialization across different .NET frameworks.
        /// </remarks>
        public void CrossFrameworkSerializeMembers()
        {
            using (var p = Pipeline.Create())
            {
                var testObj = new TypeMembers
                {
                    IntValue    = 0x7777AAA,
                    ByteValue   = 0xBB,
                    BoolValue   = true,
                    ShortValue  = 0x7CDD,
                    LongValue   = 0x77777777EEEEEEEE,
                    CharValue   = 'G',
                    StringValue = "This is a test.",
                    DoubleValue = Math.PI,
                    FloatValue  = -1.234f,
                    FloatArray  = new[] { 0.1f, 2.3f },
                    StringList  = new List <string> {
                        "one", "two"
                    },
                    StringArraySegment = new ArraySegment <string>(new[] { "aaa", "bbb", "ccc" }, 1, 2),
                    Queue        = new Queue <TimeSpan>(new[] { TimeSpan.Zero, TimeSpan.FromSeconds(1) }),
                    IntComparer  = EqualityComparer <int> .Default,
                    Tuple        = Tuple.Create(0x77777777EEEEEEEE, "This is a tuple."),
                    ValueTuple   = (new DateTime(2020, 1, 2), new Stack <int>(new[] { 33, 782 })),
                    IntArray     = new[] { 0, 3 },
                    StringArray  = new[] { "three", "four" },
                    EnumComparer = EqualityComparer <DayOfWeek> .Default,
                    Dictionary   = new Dictionary <string, int> {
                        { "one", 1 }, { "two", 2 }
                    },
                };

                var store = PsiStore.Create(p, "Store2", this.testPath);
                Generators.Return(p, testObj).Write("TypeMembers", store);
                p.Run();
            }

            // retain test store for cross-framework tests to run against after this process exits
            this.cleanupTestFolder = false;
        }
Example #12
0
        public void RetrieveStreamSupplementalMetadata()
        {
            var name = nameof(this.RetrieveStreamSupplementalMetadata);

            // create store with supplemental meta
            using (var p = Pipeline.Create("write"))
            {
                var store   = PsiStore.Create(p, name, this.path);
                var stream0 = Generators.Range(p, 0, 10, TimeSpan.FromTicks(1));
                var stream1 = Generators.Range(p, 0, 10, TimeSpan.FromTicks(1));
                stream0.Write("NoMeta", store, true);
                stream1.Write(("Favorite irrational number", Math.E), "WithMeta", store);
            }

            // read it back with a store stream reader
            var reader = new PsiStoreStreamReader(name, this.path);

            Assert.IsNull(reader.GetStreamMetadata("NoMeta").SupplementalMetadataTypeName);
            Assert.AreEqual(typeof(ValueTuple <string, double>).AssemblyQualifiedName, reader.GetStreamMetadata("WithMeta").SupplementalMetadataTypeName);
            var supplemental1 = reader.GetSupplementalMetadata <(string, double)>("WithMeta");

            Assert.AreEqual("Favorite irrational number", supplemental1.Item1);
            Assert.AreEqual(Math.E, supplemental1.Item2);
        }
Example #13
0
 /// <summary>
 /// Initializes a new instance of the <see cref="RemoteExporter"/> class.
 /// </summary>
 /// <param name="pipeline">Pipeline to which to attach.</param>
 /// <param name="port">TCP port on which to listen (default 11411).</param>
 /// <param name="transport">Transport kind to use.</param>
 /// <param name="maxBytesPerSecond">Maximum bytes/sec quota (default infinite).</param>
 /// <param name="bytesPerSecondSmoothingWindowSeconds">Smoothing window over which to compute bytes/sec (default 5 sec.).</param>
 public RemoteExporter(Pipeline pipeline, int port = DefaultPort, TransportKind transport = DefaultTransport, long maxBytesPerSecond = long.MaxValue, double bytesPerSecondSmoothingWindowSeconds = 5.0)
     : this(PsiStore.Create(pipeline, $"RemoteExporter_{Guid.NewGuid().ToString()}", null, true), port, transport, maxBytesPerSecond, bytesPerSecondSmoothingWindowSeconds)
 {
 }
Example #14
0
        public async Task TranscribeConversationsAsync(IEnumerable <string> voiceSignatureStringUsers)
        {
            uint samplesPerSecond = 16000;
            byte bitsPerSample    = 16;
            byte channels         = 8; // 7 + 1 channels

            var config = SpeechConfig.FromSubscription(this.SubscriptionKey, this.Region);

            config.SetProperty("ConversationTranscriptionInRoomAndOnline", "true");
            var stopRecognition = new TaskCompletionSource <int>();

            using (var audioInput = AudioInputStream.CreatePushStream(AudioStreamFormat.GetWaveFormatPCM(samplesPerSecond, bitsPerSample, channels)))
            {
                var meetingID = Guid.NewGuid().ToString();
                using (var conversation = await Conversation.CreateConversationAsync(config, meetingID))
                {
                    // create a conversation transcriber using audio stream input
                    using (this.conversationTranscriber = new ConversationTranscriber(AudioConfig.FromStreamInput(audioInput)))
                    {
                        conversationTranscriber.Transcribing += (s, e) =>
                        {
                            this.SetText($"TRANSCRIBING: Text={e.Result.Text} SpeakerId={e.Result.UserId}");
                        };

                        conversationTranscriber.Transcribed += (s, e) =>
                        {
                            if (e.Result.Reason == ResultReason.RecognizedSpeech)
                            {
                                this.SetText($"TRANSCRIBED: Text={e.Result.Text} SpeakerId={e.Result.UserId}");
                            }
                            else if (e.Result.Reason == ResultReason.NoMatch)
                            {
                                this.SetText($"NOMATCH: Speech could not be recognized.");
                            }
                        };

                        conversationTranscriber.Canceled += (s, e) =>
                        {
                            this.SetText($"CANCELED: Reason={e.Reason}");

                            if (e.Reason == CancellationReason.Error)
                            {
                                this.SetText($"CANCELED: ErrorCode={e.ErrorCode}");
                                this.SetText($"CANCELED: ErrorDetails={e.ErrorDetails}");
                                this.SetText($"CANCELED: Did you update the subscription info?");
                                stopRecognition.TrySetResult(0);
                            }
                        };

                        conversationTranscriber.SessionStarted += (s, e) =>
                        {
                            this.SetText($"\nSession started event. SessionId={e.SessionId}");
                        };

                        conversationTranscriber.SessionStopped += (s, e) =>
                        {
                            this.SetText($"\nSession stopped event. SessionId={e.SessionId}");
                            this.SetText("\nStop recognition.");
                            stopRecognition.TrySetResult(0);
                        };

                        // Add participants to the conversation.
                        int i = 1;
                        foreach (var voiceSignatureStringUser in voiceSignatureStringUsers)
                        {
                            var speaker = Participant.From($"User{i++}", "en-US", voiceSignatureStringUser);
                            await conversation.AddParticipantAsync(speaker);
                        }

                        // Join to the conversation and start transcribing
                        await conversationTranscriber.JoinConversationAsync(conversation);

                        await conversationTranscriber.StartTranscribingAsync().ConfigureAwait(false);

                        using (var p = Pipeline.Create())
                        {
                            var store   = PsiStore.Create(p, "Transcribe", @"D:\Temp");
                            var capture = new AudioCapture(p, WaveFormat.CreatePcm((int)samplesPerSecond, bitsPerSample, channels)).Write("Audio", store);
                            capture.Do(audio => audioInput.Write(audio.Data));
                            p.RunAsync();

                            // waits for completion, then stop transcription
                            await stopRecognition.Task;
                        }

                        await conversationTranscriber.StopTranscribingAsync().ConfigureAwait(false);
                    }
                }
            }
        }
Example #15
0
        /// <summary>
        /// This is the main code for our Multimodal Speech Detection demo.
        /// </summary>
        private void PerformMultiModalSpeechDetection()
        {
            Console.WriteLine("Initializing Psi.");

            bool detected = false;

            // First create our \Psi pipeline
            using (var pipeline = Pipeline.Create("MultiModalSpeechDetection"))
            {
                // Register an event handler to catch pipeline errors
                pipeline.PipelineExceptionNotHandled += Pipeline_PipelineException;

                // Register an event handler to be notified when the pipeline completes
                pipeline.PipelineCompleted += Pipeline_PipelineCompleted;

                // Next create our Kinect sensor. We will be using the color images, face tracking, and audio from the Kinect sensor
                var kinectSensorConfig = new KinectSensorConfiguration
                {
                    OutputColor  = true,
                    OutputAudio  = true,
                    OutputBodies = true, // In order to detect faces using Kinect you must also enable detection of bodies
                };
                var kinectSensor       = new KinectSensor(pipeline, kinectSensorConfig);
                var kinectFaceDetector = new Microsoft.Psi.Kinect.Face.KinectFaceDetector(pipeline, kinectSensor, Microsoft.Psi.Kinect.Face.KinectFaceDetectorConfiguration.Default);

                // Create our Voice Activation Detector
                var speechDetector = new SystemVoiceActivityDetector(pipeline);
                var convertedAudio = kinectSensor.Audio.Resample(WaveFormat.Create16kHz1Channel16BitPcm());
                convertedAudio.PipeTo(speechDetector);

                // Use the Kinect's face track to determine if the mouth is opened
                var mouthOpenAsFloat = kinectFaceDetector.Faces.Where(faces => faces.Count > 0).Select((List <Microsoft.Psi.Kinect.Face.KinectFace> list) =>
                {
                    if (!detected)
                    {
                        detected = true;
                        Console.WriteLine("Found your face");
                    }

                    bool open = (list[0] != null) ? list[0].FaceProperties[Microsoft.Kinect.Face.FaceProperty.MouthOpen] == Microsoft.Kinect.DetectionResult.Yes : false;
                    return(open ? 1.0 : 0.0);
                });

                // Next take the "mouthOpen" value and create a hold on that value (so that we don't see 1,0,1,0,1 but instead would see 1,1,1,1,0.8,0.6,0.4)
                var mouthOpen = mouthOpenAsFloat.Hold(0.1);

                // Next join the results of the speechDetector with the mouthOpen generator and only select samples where
                // we have detected speech and that the mouth was open.
                var mouthAndSpeechDetector = speechDetector.Join(mouthOpen, hundredMs).Select((t, e) => t.Item1 && t.Item2);

                // Convert our speech into text
                var speechRecognition = convertedAudio.SpeechToText(mouthAndSpeechDetector);
                speechRecognition.Do((s, t) =>
                {
                    if (s.Item1.Length > 0)
                    {
                        Console.WriteLine("You said: " + s.Item1);
                    }
                });

                // Create a stream of landmarks (points) from the face detector
                var facePoints = new List <Tuple <System.Windows.Point, string> >();
                var landmarks  = kinectFaceDetector.Faces.Where(faces => faces.Count > 0).Select((List <Microsoft.Psi.Kinect.Face.KinectFace> list) =>
                {
                    facePoints.Clear();
                    System.Windows.Point pt1 = new System.Windows.Point(
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.EyeLeft].X,
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.EyeLeft].Y);
                    facePoints.Add(Tuple.Create(pt1, string.Empty));

                    System.Windows.Point pt2 = new System.Windows.Point(
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.EyeRight].X,
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.EyeRight].Y);
                    facePoints.Add(Tuple.Create(pt2, string.Empty));

                    System.Windows.Point pt3 = new System.Windows.Point(
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.MouthCornerLeft].X,
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.MouthCornerLeft].Y);
                    facePoints.Add(Tuple.Create(pt3, string.Empty));

                    System.Windows.Point pt4 = new System.Windows.Point(
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.MouthCornerRight].X,
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.MouthCornerRight].Y);
                    facePoints.Add(Tuple.Create(pt4, string.Empty));

                    System.Windows.Point pt5 = new System.Windows.Point(
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.Nose].X,
                        list[0].FacePointsInColorSpace[Microsoft.Kinect.Face.FacePointType.Nose].Y);
                    facePoints.Add(Tuple.Create(pt5, string.Empty));
                    return(facePoints);
                });

                // ********************************************************************
                // Finally create a Live Visualizer using PsiStudio.
                // We must persist our streams to a store in order for Live Viz to work properly
                // ********************************************************************

                // Create store for the data. Live Visualizer can only read data from a store.
                var pathToStore = Environment.GetFolderPath(Environment.SpecialFolder.MyVideos);
                var store       = PsiStore.Create(pipeline, ApplicationName, pathToStore);

                mouthOpen.Select(v => v ? 1d : 0d).Write("MouthOpen", store);

                speechDetector.Select(v => v ? 1d : 0d).Write("VAD", store);

                mouthAndSpeechDetector.Write("Join(MouthOpen,VAD)", store);

                kinectSensor.Audio.Write("Audio", store);

                var images = kinectSensor.ColorImage.EncodeJpeg(90, DeliveryPolicy.LatestMessage).Out;
                images.Write("Images", store, true, DeliveryPolicy.LatestMessage);

                landmarks.Write("FaceLandmarks", store);

                // Run the pipeline
                pipeline.RunAsync();

                Console.WriteLine("Press any key to finish recording");
                Console.ReadKey();
            }
        }
Example #16
0
        public void CreateAndStartPipeline()
        {
            this.pipeline = Pipeline.Create("Teams Pipeline", enableDiagnostics: this.botSettings.EnablePsiDiagnostics);

            this.frameSourceComponent = new FrameSourceComponent(this.pipeline, logger);

            var mpegConfig = Mpeg4WriterConfiguration.Default;

            mpegConfig.ContainsAudio = false;
            mpegConfig.ImageWidth    = (uint)this.botSettings.Resize.Width;
            mpegConfig.ImageHeight   = (uint)this.botSettings.Resize.Height;
            mpegConfig.PixelFormat   = PixelFormat.BGR_24bpp;

            var basePath    = this.botSettings.RecordingFilePath;
            var endpointUrl = this.botSettings.ModelEndpointUrl;
            var resized     = frameSourceComponent
                              .Video
                              .Select(v => v.First().Value) // discarding participant id - this means that no information of participant is carried forward
                              .Resize(this.botSettings.Resize.Width, this.botSettings.Resize.Height)
                              .Name("Resized Frames");

            // input is stream of frames
            var fileNames = resized
                            .WriteMP4InBatches(TimeSpan.FromSeconds(this.botSettings.VideoSegmentationIntervalInSeconds), basePath, mpegConfig)
                            .Name("FileNames");

            var labelStream = fileNames
                              .CallModel(endpointUrl, basePath, logger).Name("Model Result")
                              .Do(l => this.logger.Info($"file: {l.filename} label: {l.label}"));

            // output is stream of labels

            labelStream.Item2()
            .PerformTextToSpeech(this.ttsSettings, this.logger).Name("Text To Speech")
            .Do(bytes => this.sendAudioToBot(CreateAudioMediaBuffers(DateTime.UtcNow.Ticks, bytes))).Name("Send Audio To Bot");

            Generators
            .Repeat(pipeline, true, TimeSpan.FromSeconds(1.0 / 15)).Name("15fps generation event")
            .Pair(labelStream, DeliveryPolicy.LatestMessage, DeliveryPolicy.LatestMessage)
            .Do(f =>
            {
                try
                {
                    var text = f.Item3;
                    using (var sharedImage = ProduceScreenShare(text))
                    {
                        var image = sharedImage.Resource;
                        var nv12  = BGRAtoNV12(image.ImageData, image.Width, image.Height);
                        this.sendScreenShareToBot(nv12);
                    }
                }
                catch (Exception ex)
                {
                    this.logger.Error(ex, "Error while screen sharing");
                }
            }).Name("Screen Share to bot");

            if (this.botSettings.EnablePsiStore)
            {
                var store = PsiStore.Create(pipeline, "Bot", this.botSettings.PsiStorePath);
                //resized.Write("video", store);
                labelStream.Write("label", store);
                if (this.botSettings.EnablePsiDiagnostics)
                {
                    pipeline.Diagnostics.Write("Diagnostics", store);
                }
            }

            this.pipeline.PipelineExceptionNotHandled += (_, ex) =>
            {
                this.logger.Error(ex.Exception, $"PSI PIPELINE ERROR: {ex.Exception.Message}");
            };

            pipeline.RunAsync();
            //Task.Run(async () => {
            //    await Task.Delay(30000);
            //    this.logger.Warn("STOPPPPPPPPPIIIIIIIIINNNNNNNNGGGGGGGGGGGGGGGGG");
            //    pipeline.Dispose();
            //});
        }