Example #1
0
        private static ISymbolicRegressionSolution CreateSymbolicSolution(List <IRegressionModel> models, double nu, IRegressionProblemData problemData)
        {
            var symbModels   = models.OfType <ISymbolicRegressionModel>();
            var lowerLimit   = symbModels.Min(m => m.LowerEstimationLimit);
            var upperLimit   = symbModels.Max(m => m.UpperEstimationLimit);
            var interpreter  = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
            var progRootNode = new ProgramRootSymbol().CreateTreeNode();
            var startNode    = new StartSymbol().CreateTreeNode();

            var addNode   = new Addition().CreateTreeNode();
            var mulNode   = new Multiplication().CreateTreeNode();
            var scaleNode = (ConstantTreeNode) new Constant().CreateTreeNode(); // all models are scaled using the same nu

            scaleNode.Value = nu;

            foreach (var m in symbModels)
            {
                var relevantPart = m.SymbolicExpressionTree.Root.GetSubtree(0).GetSubtree(0); // skip root and start
                addNode.AddSubtree((ISymbolicExpressionTreeNode)relevantPart.Clone());
            }

            mulNode.AddSubtree(addNode);
            mulNode.AddSubtree(scaleNode);
            startNode.AddSubtree(mulNode);
            progRootNode.AddSubtree(startNode);
            var t             = new SymbolicExpressionTree(progRootNode);
            var combinedModel = new SymbolicRegressionModel(problemData.TargetVariable, t, interpreter, lowerLimit, upperLimit);
            var sol           = new SymbolicRegressionSolution(combinedModel, problemData);

            return(sol);
        }
        protected static double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
                                                          IDataset dataset, IEnumerable <int> rows)
        {
            //optimization: constant nodes return always the same value
            ConstantTreeNode constantNode = node as ConstantTreeNode;

            if (constantNode != null)
            {
                return(constantNode.Value);
            }

            var rootSymbol  = new ProgramRootSymbol().CreateTreeNode();
            var startSymbol = new StartSymbol().CreateTreeNode();

            rootSymbol.AddSubtree(startSymbol);
            startSymbol.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());

            var tempTree = new SymbolicExpressionTree(rootSymbol);

            // clone ADFs of source tree
            for (int i = 1; i < sourceTree.Root.SubtreeCount; i++)
            {
                tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
            }
            return(interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Median());
        }
Example #3
0
        public static ISymbolicExpressionTree ToTree(this HashNode <ISymbolicExpressionTreeNode>[] nodes)
        {
            var root  = new ProgramRootSymbol().CreateTreeNode();
            var start = new StartSymbol().CreateTreeNode();

            root.AddSubtree(start);
            start.AddSubtree(nodes.ToSubtree());
            return(new SymbolicExpressionTree(root));
        }
        public InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView()
            : base()
        {
            InitializeComponent();
            this.Caption = "Interactive Time-Series Prognosis Solution Simplifier";

            constantNode = ((ConstantTreeNode) new Constant().CreateTreeNode());
            ISymbolicExpressionTreeNode root  = new ProgramRootSymbol().CreateTreeNode();
            ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();

            root.AddSubtree(start);
            tempTree = new SymbolicExpressionTree(root);
        }
        protected IEnumerable <double> CalculateReplacementValues(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
                                                                  IDataset dataset, IEnumerable <int> rows)
        {
            //optimization: constant nodes return always the same value
            ConstantTreeNode             constantNode     = node as ConstantTreeNode;
            BinaryFactorVariableTreeNode binaryFactorNode = node as BinaryFactorVariableTreeNode;
            FactorVariableTreeNode       factorNode       = node as FactorVariableTreeNode;

            if (constantNode != null)
            {
                yield return(constantNode.Value);
            }
            else if (binaryFactorNode != null)
            {
                // valid replacements are either all off or all on
                yield return(0);

                yield return(1);
            }
            else if (factorNode != null)
            {
                foreach (var w in factorNode.Weights)
                {
                    yield return(w);
                }
                yield return(0.0);
            }
            else
            {
                var rootSymbol  = new ProgramRootSymbol().CreateTreeNode();
                var startSymbol = new StartSymbol().CreateTreeNode();
                rootSymbol.AddSubtree(startSymbol);
                startSymbol.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());

                var tempTree = new SymbolicExpressionTree(rootSymbol);
                // clone ADFs of source tree
                for (int i = 1; i < sourceTree.Root.SubtreeCount; i++)
                {
                    tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
                }
                yield return(interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Median());

                yield return(interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Average()); // TODO perf
            }
        }
        public static ISymbolicExpressionTree Derive(ISymbolicExpressionTree tree, string variableName)
        {
            if (tree.Root.SubtreeCount != 1)
            {
                throw new NotImplementedException("Derive is not implemented for symbolic expressions with automatically defined functions (ADF)");
            }
            if (tree.Root.GetSubtree(0).SubtreeCount != 1)
            {
                throw new NotImplementedException("Derive is not implemented for multi-variate symbolic expressions");
            }
            var mainBranch = tree.Root.GetSubtree(0).GetSubtree(0);
            var root       = new ProgramRootSymbol().CreateTreeNode();

            root.AddSubtree(new StartSymbol().CreateTreeNode());
            var dTree = TreeSimplifier.GetSimplifiedTree(Derive(mainBranch, variableName));

            //var dTree = Derive(mainBranch, variableName);
            root.GetSubtree(0).AddSubtree(dTree);
            return(new SymbolicExpressionTree(root));
        }
Example #7
0
        public ISymbolicExpressionTree ExtractTree(int treeIdx)
        {
            var rf = RandomForest;
            // hoping that the internal representation of alglib is stable

            // TREE FORMAT
            // W[Offs]      -   size of sub-array (for the tree)
            //     node info:
            // W[K+0]       -   variable number        (-1 for leaf mode)
            // W[K+1]       -   threshold              (class/value for leaf node)
            // W[K+2]       -   ">=" branch index      (absent for leaf node)

            // skip irrelevant trees
            int offset = 0;

            for (int i = 0; i < treeIdx - 1; i++)
            {
                offset = offset + (int)Math.Round(rf.innerobj.trees[offset]);
            }

            var constSy   = new Constant();
            var varCondSy = new VariableCondition()
            {
                IgnoreSlope = true
            };

            var node = CreateRegressionTreeRec(rf.innerobj.trees, offset, offset + 1, constSy, varCondSy);

            var startNode = new StartSymbol().CreateTreeNode();

            startNode.AddSubtree(node);
            var root = new ProgramRootSymbol().CreateTreeNode();

            root.AddSubtree(startNode);
            return(new SymbolicExpressionTree(root));
        }
Example #8
0
        public void DeriveExpressions()
        {
            var formatter = new InfixExpressionFormatter();
            var parser    = new InfixExpressionParser();

            Assert.AreEqual("0", Derive("3", "x"));
            Assert.AreEqual("1", Derive("x", "x"));
            Assert.AreEqual("10", Derive("10*x", "x"));
            Assert.AreEqual("10", Derive("x*10", "x"));
            Assert.AreEqual("(2*'x')", Derive("x*x", "x"));
            Assert.AreEqual("((('x' * 'x') * 2) + ('x' * 'x'))", Derive("x*x*x", "x")); // simplifier does not merge (x*x)*2 + x*x  to 3*x*x
            Assert.AreEqual("0", Derive("10*x", "y"));
            Assert.AreEqual("20", Derive("10*x+20*y", "y"));
            Assert.AreEqual("6", Derive("2*3*x", "x"));
            Assert.AreEqual("(10*'y')", Derive("10*x*y+20*y", "x"));
            Assert.AreEqual("(1 / (SQR('x') * (-1)))", Derive("1/x", "x"));
            Assert.AreEqual("('y' / (SQR('x') * (-1)))", Derive("y/x", "x"));
            Assert.AreEqual("((((-2*'x') + (-1)) * ('a' + 'b')) / SQR(('x' + ('x' * 'x'))))",
                            Derive("(a+b)/(x+x*x)", "x"));
            Assert.AreEqual("((((-2*'x') + (-1)) * ('a' + 'b')) / SQR(('x' + SQR('x'))))", Derive("(a+b)/(x+SQR(x))", "x"));
            Assert.AreEqual("EXP('x')", Derive("exp(x)", "x"));
            Assert.AreEqual("(EXP((3*'x')) * 3)", Derive("exp(3*x)", "x"));
            Assert.AreEqual("(1 / 'x')", Derive("log(x)", "x"));
            Assert.AreEqual("(1 / 'x')", Derive("log(3*x)", "x"));                                            // 3 * 1/(3*x)
            Assert.AreEqual("(1 / ('x' + (0.333333333333333*'y')))", Derive("log(3*x+y)", "x"));              // simplifier does not try to keep fractions
            Assert.AreEqual("(1 / (SQRT(((3*'x') + 'y')) * 0.666666666666667))", Derive("sqrt(3*x+y)", "x")); // 3 / (2 * sqrt(3*x+y)) = 1 / ((2/3) * sqrt(3*x+y))
            Assert.AreEqual("(COS((3*'x')) * 3)", Derive("sin(3*x)", "x"));
            Assert.AreEqual("(SIN((3*'x')) * (-3))", Derive("cos(3*x)", "x"));
            Assert.AreEqual("(1 / (SQR(COS((3*'x'))) * 0.333333333333333))", Derive("tan(3*x)", "x")); // diff(tan(f(x)), x) = 1.0 / cos²(f(x)), simplifier puts constant factor into the denominator

            Assert.AreEqual("((9*'x') / ABS((3*'x')))", Derive("abs(3*x)", "x"));
            Assert.AreEqual("(SQR('x') * 3)", Derive("cube(x)", "x"));
            Assert.AreEqual("(1 / (SQR(CUBEROOT('x')) * 3))", Derive("cuberoot(x)", "x"));

            Assert.AreEqual("0", Derive("(a+b)/(x+SQR(x))", "y")); // df(a,b,x) / dy = 0


            Assert.AreEqual("('a' * 'b' * 'c')", Derive("a*b*c*d", "d"));
            Assert.AreEqual("('a' / ('b' * 'c' * SQR('d') * (-1)))", Derive("a/b/c/d", "d"));

            Assert.AreEqual("('x' * ((SQR(TANH(SQR('x'))) * (-1)) + 1) * 2)", Derive("tanh(sqr(x))", "x")); // (2*'x'*(1 - SQR(TANH(SQR('x'))))

            {
                // special case: Inv(x) using only one argument to the division symbol
                // f(x) = 1/x
                var root    = new ProgramRootSymbol().CreateTreeNode();
                var start   = new StartSymbol().CreateTreeNode();
                var div     = new Division().CreateTreeNode();
                var varNode = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode.Weight       = 1.0;
                varNode.VariableName = "x";
                div.AddSubtree(varNode);
                start.AddSubtree(div);
                root.AddSubtree(start);
                var t = new SymbolicExpressionTree(root);
                Assert.AreEqual("(1 / (SQR('x') * (-1)))",
                                formatter.Format(DerivativeCalculator.Derive(t, "x")));
            }

            {
                // special case: multiplication with only one argument
                var root    = new ProgramRootSymbol().CreateTreeNode();
                var start   = new StartSymbol().CreateTreeNode();
                var mul     = new Multiplication().CreateTreeNode();
                var varNode = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode.Weight       = 3.0;
                varNode.VariableName = "x";
                mul.AddSubtree(varNode);
                start.AddSubtree(mul);
                root.AddSubtree(start);
                var t = new SymbolicExpressionTree(root);
                Assert.AreEqual("3",
                                formatter.Format(DerivativeCalculator.Derive(t, "x")));
            }

            {
                // division with multiple arguments
                // div(x, y, z) is interpreted as (x / y) / z
                var root     = new ProgramRootSymbol().CreateTreeNode();
                var start    = new StartSymbol().CreateTreeNode();
                var div      = new Division().CreateTreeNode();
                var varNode1 = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode1.Weight       = 3.0;
                varNode1.VariableName = "x";
                var varNode2 = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode2.Weight       = 4.0;
                varNode2.VariableName = "y";
                var varNode3 = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode3.Weight       = 5.0;
                varNode3.VariableName = "z";
                div.AddSubtree(varNode1); div.AddSubtree(varNode2); div.AddSubtree(varNode3);
                start.AddSubtree(div);
                root.AddSubtree(start);
                var t = new SymbolicExpressionTree(root);

                Assert.AreEqual("(('y' * 'z' * 60) / (SQR('y') * SQR('z') * 400))",    // actually 3 / (4y  5z) but simplifier is not smart enough to cancel numerator and denominator
                                                                                       // 60 y z / y² z² 20² == 6 / y z 40 == 3 / y z 20
                                formatter.Format(DerivativeCalculator.Derive(t, "x")));
                Assert.AreEqual("(('x' * 'z' * (-60)) / (SQR('y') * SQR('z') * 400))", // actually 3x * -(4 5 z) / (4y 5z)² = -3x / (20 y² z)
                                                                                       // -3 4 5 x z / 4² y² 5² z² = -60 x z / 20² z² y² ==    -60 x z / y² z² 20²
                                formatter.Format(DerivativeCalculator.Derive(t, "y")));
                Assert.AreEqual("(('x' * 'y' * (-60)) / (SQR('y') * SQR('z') * 400))",
                                formatter.Format(DerivativeCalculator.Derive(t, "z")));
            }
        }