public void Should_be_able_to_read_valid_dataset()
        {
            // Dataset extracted from first five rows of mpg.ds file.
            var dataset = new List <List <double> >
            {
                new List <double> {
                    18, 8, 307.0, 130.0, 3504.0, 12.0, 70, 1
                },
                new List <double> {
                    15, 8, 350.0, 165.0, 3693.0, 11.5, 70, 1
                },
                new List <double> {
                    18, 8, 318.0, 150.0, 3436.0, 11.0, 70, 1
                },
                new List <double> {
                    16, 8, 304.0, 150.0, 3433.0, 12.0, 70, 1
                },
                new List <double> {
                    17, 8, 302.0, 140.0, 3449.0, 10.5, 70, 1
                }
            };

            svm_problem prob = ProblemHelper.ReadAndScaleProblem(dataset);

            // Data count
            int dataCount = dataset.Count();

            Assert.AreEqual(prob.l, dataCount, 0.01);
            Assert.AreEqual(prob.x.Count(), dataCount, 0.01);
            Assert.AreEqual(prob.y.Count(), dataCount, 0.01);

            // Scale
            Assert.AreEqual(prob.x.Max(v => v.Max(n => n.value)), 1.0, 0.1);
            Assert.AreEqual(prob.x.Min(v => v.Max(n => n.value)), 0.0, 0.1);
        }
Example #2
0
        static void Main(string[] args)
        {
            var    path    = Environment.CurrentDirectory;
            string DvCPath = System.IO.Path.Combine(path, DvC_TEST_FILE);
            string DvHPath = System.IO.Path.Combine(path, DvH_TEST_FILE);
            string HvCPath = System.IO.Path.Combine(path, HvC_TEST_FILE);

            DvC_prob = ProblemHelper.ReadAndScaleProblem(DvCPath);
            DvH_prob = ProblemHelper.ReadAndScaleProblem(DvHPath);
            HvC_prob = ProblemHelper.ReadAndScaleProblem(HvCPath);

            var DvCsvm = new C_SVC(DvC_prob, KernelHelper.RadialBasisFunctionKernel(gamma), C);
            var DvHsvm = new C_SVC(DvH_prob, KernelHelper.RadialBasisFunctionKernel(gamma), C);
            var HvCsvm = new C_SVC(HvC_prob, KernelHelper.RadialBasisFunctionKernel(gamma), C);

            var DvCcva = DvCsvm.GetCrossValidationAccuracy(5);
            var DvHcva = DvHsvm.GetCrossValidationAccuracy(2);
            var HvCcva = HvCsvm.GetCrossValidationAccuracy(5);

            DvCsvm.Export(System.IO.Path.Combine(path, DvC_MODEL_FILE));
            DvHsvm.Export(System.IO.Path.Combine(path, DvH_MODEL_FILE));
            HvCsvm.Export(System.IO.Path.Combine(path, HvC_MODEL_FILE));

            Console.WriteLine(String.Format("--------------------------"));
            Console.WriteLine(String.Format("DvC Result: {0}%", (Math.Round(DvCcva * 100, 2)).ToString()));
            Console.WriteLine(String.Format("DvH Result: {0}%", (Math.Round(DvHcva * 100, 2)).ToString()));
            Console.WriteLine(String.Format("HvC Result: {0}%", (Math.Round(HvCcva * 100, 2)).ToString()));
            Console.WriteLine(String.Format("--------------------------"));

            Console.ReadKey();
        }
Example #3
0
        private void buttonSVM_Click(object sender, EventArgs e)
        {
            List <double> values = new List <double>();

            foreach (var column in checkedListBoxVariableRellenar.SelectedItems)
            {
                for (int i = 0; i < dt.Rows.Count; i++)
                {
                    values.Add(double.Parse(dt.Rows[i][column.ToString()].ToString()));
                }

                var dataTraining = ProblemHelper.ReadAndScaleProblem(new List <List <double> >()
                {
                    values
                });
                var    svm = new Epsilon_SVR(DataProblem, KernelHelper.RadialBasisFunctionKernel(Gamma), C, Elipson);
                double mse = svm.GetMeanSquaredError();

                var prediction = svm.Predict(dataTraining.x[0]);
            }


            // 1. primero se debe armar una subtabla con los atributos que se van a utilizar.
            // que serian los que estan en el checkbox.

            // 2. elegir la columna sobre la que se quiere rellenar valores

            // 3. se quitan los registros que contengan datos faltantes de las variables predictoras, para este caso son los que tengan valor de -200

            // 4. Aplicar el algoritmo de VSM

            // 5. Generar Vista con valores resultado

            // 6. Generar resumen de resultados: en tal fila, cambie tal por tal.
        }
        public void TestInitialize()
        {
            var path     = Environment.CurrentDirectory;
            var pos      = path.IndexOf("libsvm.net");
            var basePath = path.Substring(0, pos + 10);

            training_prob = ProblemHelper.ReadAndScaleProblem(System.IO.Path.Combine(basePath, TRAINING_FILE));
            test_prob     = ProblemHelper.ReadAndScaleProblem(System.IO.Path.Combine(basePath, TEST_FILE));
        }
        /// <summary>
        ///Test pour ReadAndScaleProblem
        ///</summary>
        //[TestMethod()]
        public void ReadAndScaleProblemTest()
        {
            string full_path = System.IO.Path.Combine(base_path, TEST_FILE);
            var    prob      = ProblemHelper.ReadAndScaleProblem(full_path);

            Assert.IsNotNull(prob);
            Assert.IsTrue(prob.x.Max(v => v.Max(n => n.value)) == 1.0);
            Assert.IsTrue(prob.x.Min(v => v.Min(n => n.value)) == -1.0);
        }
Example #6
0
        public static void LibSVM(List <string> inputData, List <string> testData)
        {
            var inputFilePath = @"D:\新西兰学习生活\大学上课\乐谱数据\input.txt";
            var testFilePath  = @"D:\新西兰学习生活\大学上课\乐谱数据\test.txt";

            PrepareDataLibSvm(inputData, inputFilePath);
            PrepareDataLibSvm(testData, testFilePath);

            var _prob = ProblemHelper.ReadAndScaleProblem(inputFilePath);
            var svm   = new C_SVC(_prob, KernelHelper.RadialBasisFunctionKernel(gamma), C);
        }
Example #7
0
        public void TestInitialize()
        {
            var    path     = Environment.CurrentDirectory;
            var    pos      = path.IndexOf("libsvm.net");
            var    basePath = path.Substring(0, pos + 10);
            string fullPath = System.IO.Path.Combine(basePath, LEU_TEST_FILE);

            // get data from file
            // Note that you should always scale your data
            _prob = ProblemHelper.ReadAndScaleProblem(fullPath);
        }
Example #8
0
        public bool buildSVMCorpus(string filename)
        {
            string trainDataPath = filename + "SimpleScaledTrainSVM.txt";

            if (File.Exists(trainDataPath))
            {
                _prob         = ProblemHelper.ReadAndScaleProblem(trainDataPath);
                svm           = new C_SVC(_prob, KernelHelper.LinearKernel(), C);
                fileExistance = true;

                var      reader = new StreamReader(File.OpenRead(filename + "MinMax.txt"));
                string[] minMax = reader.ReadLine().Split(',');
                scale.min = Convert.ToDouble(minMax[0]);
                scale.max = Convert.ToDouble(minMax[1]);
            }

            return(fileExistance);
        }
        public void Should_be_able_to_detect_invalid_feature_count_in_dataset()
        {
            var dataset = new List <List <double> >
            {
                new List <double> {
                    18, 8, 307.0, 130.0, 3504.0, 12.0, 70, 1
                },
                new List <double> {
                    15, 8, 350.0, 165.0, 3693.0, 11.5, 70, 1
                },
                new List <double> {
                    18, 8, 318.0, 150.0, 11.0, 70, 1
                },                                                   // miss the 4th feature column.
                new List <double> {
                    16, 8, 304.0, 150.0, 3433.0, 12.0, 70, 1
                },
                new List <double> {
                    17, 8, 302.0, 140.0, 3449.0, 10.5, 70, 1
                }
            };

            ProblemHelper.ReadAndScaleProblem(dataset);
        }
 public void Should_be_able_to_detect_void_dataset()
 {
     ProblemHelper.ReadAndScaleProblem(new List <List <double> >());
 }
 public void Should_be_able_to_detect_null_dataset()
 {
     ProblemHelper.ReadAndScaleProblem((List <List <double> >)null);
 }