Example #1
0
        static async Task Main(string[] args)
        {
            PredictionModel <CustData, ClusterPrediction> model = await Train();

            var prediction = model.Predict(TestCustData.PredictionObj);

            Console.WriteLine($"Cluster: {prediction.PredictedCustId}");
            Console.WriteLine($"Distances: {string.Join(" ", prediction.Distancessdfsd)}");
            Console.ReadLine();
        }
        public static IEnumerable <(ArticleContentData, ArticleContentPrediction)> Predict(PredictionModel <ArticleContentData, ArticleContentPrediction> model, IEnumerable <ArticleContentData> dataSet)
        {
            List <ArticleContentData> result = new List <ArticleContentData>();

            var predictions = model.Predict(dataSet);

            var response = dataSet.Zip(predictions, (data, prediction) => (data, prediction));

            return(response);
        }
Example #3
0
        private void ValidateExamplesLightGBM(PredictionModel <SentimentData, SentimentPrediction> model)
        {
            var sentiments  = GetTestData();
            var predictions = model.Predict(sentiments);

            Assert.Equal(2, predictions.Count());

            Assert.True(predictions.ElementAt(0).Sentiment);
            Assert.True(predictions.ElementAt(1).Sentiment);
        }
Example #4
0
        static void Main(string[] args)
        {
            PredictionModel <TaxiTrip, TaxiTripFarePrediction> model = Train().Result;

            Evaluate(model);

            var prediction = model.Predict(TestTrips.Trip1);

            Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.fare_amount);
        }
        public async Task <bool> Predicate(UsageOfLightBulbModel usageOfLightBulbModel)
        {
            // PredictionModel<UsageOfLightBulbModel, UsageOfLightBulbPredictionModel> model = await Train();
            UsageOfLightBulbPredictionModel prediction = model.Predict(usageOfLightBulbModel);

            Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.IsOn);
            var result = (prediction.IsOn > 0.5) ? true : false;

            return(result);
        }
Example #6
0
        public IEnumerable <(SentimentData sentiment, SentimentPrediction prediction)> Predict(IEnumerable <SentimentData> sentiments)
        {
            IEnumerable <SentimentPrediction> predictions = _model.Predict(sentiments);
            IEnumerable <(SentimentData sentiment, SentimentPrediction prediction)> sentimentsAndPredictions = sentiments
                                                                                                               .Zip(predictions, (sentiment, prediction) => (sentiment, prediction))
                                                                                                               .ToList();


            return(sentimentsAndPredictions);
        }
Example #7
0
        static async Task Main(string[] args)
        {
            PredictionModel <TaxiTrip, TaxiTripFarePrediction> model = await Train();

            Evaluate(model);

            TaxiTripFarePrediction prediction = model.Predict(TestTrips.Trip1);

            Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.FareAmount);
        }
        public static void Execute()
        {
            Console.WriteLine("Executing Iris Experiment");
            if (File.Exists(modelPath))
            {
                Console.WriteLine("Using existing model");
                model = PredictionModel.ReadAsync <IrisData, IrisPrediction>(modelPath).Result;
            }
            else
            {
                Console.WriteLine("Creating new model");
                // STEP 2: Create a pipeline and load your data
                var pipeline = new LearningPipeline();

                // If working in Visual Studio, make sure the 'Copy to Output Directory'
                // property of iris-data.txt is set to 'Copy always'
                pipeline.Add(new TextLoader <IrisData>(dataPath, separator: ","));

                // STEP 3: Transform your data
                // Assign numeric values to text in the "Label" column, because only
                // numbers can be processed during model training
                pipeline.Add(new Dictionarizer("Label"));

                // Puts all features into a vector
                pipeline.Add(new ColumnConcatenator("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth"));

                // STEP 4: Add learner
                // Add a learning algorithm to the pipeline.
                // This is a classification scenario (What type of iris is this?)
                pipeline.Add(new StochasticDualCoordinateAscentClassifier());

                // Convert the Label back into original text (after converting to number in step 3)
                pipeline.Add(new PredictedLabelColumnOriginalValueConverter()
                {
                    PredictedLabelColumn = "PredictedLabel"
                });

                // STEP 5: Train your model based on the data set
                model = pipeline.Train <IrisData, IrisPrediction>();

                model.WriteAsync(modelPath);
            }
            // STEP 6: Use your model to make a prediction
            // You can change these numbers to test different predictions
            var prediction = model.Predict(new IrisData()
            {
                SepalLength = 3.3f,
                SepalWidth  = 1.6f,
                PetalLength = 1.7f,
                PetalWidth  = 1.7f,
            });

            Console.WriteLine($"Predicted flower type is: {prediction.PredictedLabels}");
            Console.ReadLine();
        }
        public string Predict(SubjectData subjectData)
        {
            if (model == null)
            {
                Train();
            }

            var prediction = model.Predict(subjectData);

            return(prediction.PredictedLabels);
        }
        public static async Task BC()
        {
            PredictionModel <FoodBinaryClass, FPrediction> model = Train();
            await model.WriteAsync(_modelPath);

            var prediction = model.Predict(binaryTest.meal);

            System.Diagnostics.Debug.WriteLine($"Decision: {prediction.Prediction}");
            System.Diagnostics.Debug.WriteLine($"Probability: {prediction.Probability}");
            System.Diagnostics.Debug.WriteLine($"Score: {prediction.Score}");
        }
Example #11
0
        public static async Task <string> PredictAsync(GitHubIssue issue)
        {
            if (_model == null)
            {
                _model = await PredictionModel.ReadAsync <GitHubIssue, GitHubIssuePrediction>(ModelPath);
            }

            var prediction = _model.Predict(issue);

            return(prediction.Area);
        }
Example #12
0
        private static void Main(string[] args)
        {
            PredictionModel <IrisData, ClusterPrediction> model = Train();

            model.WriteAsync(_modelPath);

            var prediction = model.Predict(TestIrisData.Setosa);

            Console.WriteLine($"Cluster: {prediction.PredictedClusterId}");
            Console.WriteLine($"Distances: {string.Join(" ", prediction.Distances)}");
        }
Example #13
0
        public static PredictionModel <DatosSentimiento, PrediccSentimiento> EntrenayPredice()
        {
            //Recoleccion de Datos
            var pipeline = new LearningPipeline();

            pipeline.Add(new TextLoader <DatosSentimiento>(_rutaDatosEntrenamiento, useHeader: false, separator: "tab"));
            pipeline.Add(new TextFeaturizer("Features", "Texto"));
            pipeline.Add(new FastTreeBinaryClassifier()
            {
                NumLeaves = 5, NumTrees = 5, MinDocumentsInLeafs = 2
            });                                                                                                    //Aprediz de arbol de decision (Regresión);

            //Entrenamiento
            PredictionModel <DatosSentimiento, PrediccSentimiento> modelo = pipeline.Train <DatosSentimiento, PrediccSentimiento>();

            IEnumerable <DatosSentimiento> sentimientos = new[]
            {
                new DatosSentimiento
                {
                    Texto    = "This movie was very boring",
                    Etiqueta = 0
                },

                new DatosSentimiento
                {
                    Texto = "The movie does not have a great story to tell.",
                    //Texto="The movie did not get my attention",
                    Etiqueta = 0
                },
                new DatosSentimiento
                {
                    //Texto="A super exciting and entertaining movie",
                    Texto    = "It was a very exciting from the start",
                    Etiqueta = 1
                }
            };

            var predicciones = modelo.Predict(sentimientos);

            Console.WriteLine();
            Console.WriteLine("Predicción de sentimientos");
            Console.WriteLine("---------------------------");

            var sentimientosYpredicciones = sentimientos.Zip(predicciones, (sent, predict) => (sent, predict));

            foreach (var item in sentimientosYpredicciones)
            {
                Console.WriteLine($"Sentimiento: {item.sent.Texto} | Predicción: {(item.predict.Etiqueta ? "Positivo: )": "Negativo: (")}");
            }
            Console.WriteLine();

            //Evaluación del Modelo
            return(modelo);
        }
        public static async Task Main(float userBMI, float userWC)
        {
            // Use the trained model to classify the user based on their details

            var prediction = TrainedModel.Predict(new WeightData()
            {
                BMI = userBMI,
                WC  = userWC
            });

            category = prediction.PredictedLabels;
        }
Example #15
0
        public static void Predict(PredictionModel <DiabetesData, DiabetesPrediction> model)
        {
            var lines = File.ReadAllLines(_testDataPath);
            List <DiabetesData> lstData = new List <DiabetesData>();

            foreach (var line in lines)

            {
                string[] words = line.Split(',');

                foreach (var word in words)

                {
                    List <DiabetesData> data     = new List <DiabetesData>();
                    DiabetesData        diabData = new DiabetesData();
                    //num_preg,glucose_conc,diastolic_bp,thickness,insulin,bmi,diab_pred,age,skin,diabetes
                    // Stuck here how to proceed as I tried to assign it I get paragraphs of errors and exceptions
                    diabData.num_preg     = Convert.ToSingle(words[0]);
                    diabData.glucose_conc = Convert.ToSingle(words[1]);
                    diabData.diastolic_bp = Convert.ToSingle(words[2]);
                    diabData.thickness    = Convert.ToSingle(words[3]);
                    diabData.insulin      = Convert.ToSingle(words[4]);
                    diabData.bmi          = Convert.ToSingle(words[5]);
                    diabData.diab_pred    = Convert.ToSingle(words[6]);
                    diabData.age          = Convert.ToSingle(words[7]);
                    diabData.diabetes     = Convert.ToInt32(words[8]) == 1;

                    if (new Random().Next() % 50 == 0)
                    {
                        lstData.Add(diabData);
                    }
                }
            }
            IEnumerable <DiabetesPrediction> predictions = model.Predict(lstData);

            Console.WriteLine();
            Console.WriteLine(" Predictions");
            Console.WriteLine("---------------------");

            var sentimentsAndPredictions = lstData.Zip(predictions, (diabetes, prediction) => (diabetes, prediction));

            int total = sentimentsAndPredictions.Count();
            int rightCount = 0, wrongCount = 0;

            foreach (var item in sentimentsAndPredictions)
            {
                if (item.diabetes.diabetes == item.prediction.diabetes)
                {
                    Console.WriteLine($"Data: {item.diabetes.diabetes} ------ Prediction: {item.prediction.diabetes}");
                }
            }
            Console.WriteLine();
        }
Example #16
0
        static async Task Main(string[] args)
        {
            Console.WriteLine(Environment.CurrentDirectory);
            PredictionModel <NodeObject, NodePrediction> model = await Train();

            //Evaluate(model);

            NodePrediction prediction = model.Predict(TestNode.Node1);

            Console.WriteLine("Predicted Node ID: {0}", prediction.NodeIdCounter);
            Console.ReadKey();
        }
Example #17
0
        public static async Task <string> PredictAsync(GitHubIssue issue, ILogger logger, double threshold)
        {
            PredictionModel <GitHubIssue, GitHubIssuePrediction> model = await PredictionModel.ReadAsync <GitHubIssue, GitHubIssuePrediction>(ModelPath);

            GitHubIssuePrediction prediction = model.Predict(issue);

            float[] probabilities  = prediction.Probabilities;
            float   maxProbability = probabilities.Max();

            logger.LogInformation($"# {maxProbability.ToString()} {prediction.Area} for #{issue.ID} {issue.Title}");
            return(maxProbability > threshold ? prediction.Area : null);
        }
Example #18
0
        private static void Predict(PredictionModel <AgeRange, AgeRangePrediction> model, string name, float age, string gender)
        {
            var input = new AgeRange
            {
                Age    = age,
                Name   = name,
                Gender = gender
            };
            var pred = model.Predict(input);

            Console.WriteLine($"Predicted label for Name {name}, Age {age}, Gender {gender}; is {pred.PredictedLabel}");
        }
Example #19
0
        public static PredictionModel <SentimentData, SentimentPrediction> TrainAndPredict()
        {
            var pipeline = new LearningPipeline();

            pipeline.Add(new TextLoader <SentimentData>(_dataPath, useHeader: false, separator: "tab"));
            pipeline.Add(new TextFeaturizer("Features", "SentimentText"));
            pipeline.Add(new FastTreeBinaryClassifier()
            {
                NumLeaves = 5, NumTrees = 5, MinDocumentsInLeafs = 2
            });


            IEnumerable <SentimentData> sentiments = new[]
            {
                new SentimentData
                {
                    SentimentText = "Contoso's 11 is a wonderful experience",
                    Sentiment     = 0
                },
                new SentimentData
                {
                    SentimentText = "The acting in this movie is very bad",
                    Sentiment     = 0
                },
                new SentimentData
                {
                    SentimentText = "Joe versus the Volcano Coffee Company is a great film.",
                    Sentiment     = 0
                }
            };


            PredictionModel <SentimentData, SentimentPrediction> model = pipeline.Train <SentimentData, SentimentPrediction>();

            IEnumerable <SentimentPrediction> _predictions = model.Predict(sentiments);



            Console.WriteLine();
            Console.WriteLine("Sentiment Predictions");
            Console.WriteLine("---------------------");

            var sentimentsAndPredictions = sentiments.Zip(_predictions, (sentiment, prediction) => (sentiment, prediction));

            foreach (var item in sentimentsAndPredictions)
            {
                Console.WriteLine($"Sentiment: {item.sentiment.SentimentText} | Prediction: {(item.prediction.Sentiment ? "Positive" : "Negative")}");
            }
            Console.WriteLine();


            return(model);
        }
Example #20
0
        static async Task Main(string[] args)
        {
            PredictionModel <IrisData, ClusterPrediction> model = Train();
            await model.WriteAsync(_modelPath);

            var prediction = model.Predict(TestIrisData.Setosa);

            Console.WriteLine($"Cluster: {prediction.PredictedClusterId}");
            Console.WriteLine($"Distances: {string.Join(" ", prediction.Distances)}");
            Console.Write("press any key to close...");
            Console.ReadKey();
        }
Example #21
0
        public static void Predict(PredictionModel <SentimentData, SentimentPrediction> model, IMongoDatabase db)
        {
            // Adds some comments to test the trained model's predictions.
            // <Snippet18>
            IEnumerable <SentimentData> sentiments = new[]
            {
                new SentimentData
                {
                    text = "Very bad service and low quality of coffee too. Waiting for so long even tried to rush them already."
                },
                new SentimentData
                {
                    text = "This place is amazing!! I had the classic cheese burger with fries.  Hands down the best burger I have ever had"
                },
                new SentimentData
                {
                    text = "If I could give zero stars I would. Terribly overpriced. Dried over cooked barramundi with no seasoning or flavor at all"
                },
                new SentimentData
                {
                    text = "Small menu but the food is quite good. It's fast and easy, one of the better options around the area. We had the seafood laksa and seafood Pad Kee Mao"
                }
            };
            // </Snippet18>

            // Use the model to predict the positive
            // or negative sentiment of the comment data.
            // <Snippet19>
            IEnumerable <SentimentPrediction> predictions = model.Predict(sentiments);

            // </Snippet19>

            // <Snippet20>
            Console.WriteLine();
            Console.WriteLine("Sentiment Predictions");
            Console.WriteLine("---------------------");
            // </Snippet20>

            // Builds pairs of (sentiment, prediction)
            // <Snippet21>
            var sentimentsAndPredictions = sentiments.Zip(predictions, (sentiment, prediction) => (sentiment, prediction));

            // </Snippet21>

            // <Snippet22>
            foreach (var item in sentimentsAndPredictions)
            {
                Console.WriteLine($"Sentiment: {item.sentiment.text} | Prediction: {(item.prediction.sentiment ? "Positive" : "Negative")}");
            }
            Console.WriteLine();
            // </Snippet22>
        }
Example #22
0
        public void Predict()
        {
            List <ManifestDataTraining> records = ReadInputData();

            var res = model.Predict(records);

            foreach (var item in res)
            {
                records.First(x => x.PassengerId == item.PassengerId).Survived = item.Survived;
            }

            WriteResult(records);
        }
        private static void Evaluate(PredictionModel <TaxiTrip, TaxiTripFarePrediction> model)
        {
            var textData              = new TextLoader <TaxiTrip>(TestDataPath, useHeader: true, separator: ",");
            var evaluator             = new RegressionEvaluator();
            RegressionMetrics matrics = evaluator.Evaluate(model, textData);

            Console.WriteLine("Rms=" + matrics.Rms);
            Console.WriteLine("RSquared=" + matrics.RSquared);

            TaxiTripFarePrediction prediction01 = model.Predict(TestTrips.Trip1);

            Console.WriteLine("Predict fare : {0}, actual fare : 29.5", prediction01.fare_amount);
        }
Example #24
0
        public static async Task <string> PredictAsync(GitHubIssue issue, ILogger logger)
        {
            PredictionModel <GitHubIssue, GitHubIssuePrediction> model = await PredictionModel.ReadAsync <GitHubIssue, GitHubIssuePrediction>(ModelPath);

            GitHubIssuePrediction prediction = model.Predict(issue);

            float[] probabilities  = prediction.Probabilities;
            float   maxProbability = probabilities.Max();

            logger.LogInformation($"Label {prediction.Area} for {issue.ID} is predicted with confidence {maxProbability.ToString()}");

            return(maxProbability > 0.8 ? prediction.Area : null);
        }
Example #25
0
        public static void Predict(PredictionModel <PokerHandData, PokerHandPrediction> model)
        {
            var test1 = new PokerHandData
            {
                S1 = 1,
                C1 = 2,
                S2 = 1,
                C2 = 3,
                S3 = 3,
                C3 = 4,
                S4 = 4,
                C4 = 5,
                S5 = 2,
                C5 = 6
            };

            var test2 = new PokerHandData
            {
                S1 = 4,
                C1 = 5,
                S2 = 1,
                C2 = 5,
                S3 = 3,
                C3 = 5,
                S4 = 2,
                C4 = 12,
                S5 = 4,
                C5 = 7
            };

            test1.Init();
            test2.Init();
            IEnumerable <PokerHandData> pokerHands = new[]
            {
                test1,
                test2
            };
            IEnumerable <PokerHandPrediction> predictions = model.Predict(pokerHands);

            Console.WriteLine();
            Console.WriteLine("PokerHand Predictions");
            Console.WriteLine("---------------------");

            var pokerHandsAndPredictions = pokerHands.Zip(predictions, (pokerHand, prediction) => (pokerHand, prediction));

            foreach (var(pokerHand, prediction) in pokerHandsAndPredictions)
            {
                Console.WriteLine($"PokerHand: {ShowHand(pokerHand)} | Prediction: { GetPower(prediction.PredictedPower)}");
            }
            Console.WriteLine();
        }
Example #26
0
        static void Main(string[] args)
        {
            var pipeline = new LearningPipeline();

            var loader = new TextLoader(dataPath).CreateFrom <SentimentData>(useHeader: true, '\t');

            pipeline.Add(loader);

            pipeline.Add(new TextFeaturizer("Features", "SentimentText")
            {
                StopWordsRemover = new PredefinedStopWordsRemover(),
                KeepPunctuations = false,
                TextCase         = TextNormalizerTransformCaseNormalizationMode.Lower,
                VectorNormalizer = TextTransformTextNormKind.L2
            });

            pipeline.Add(new StochasticDualCoordinateAscentBinaryClassifier()
            {
                NumThreads = 8, Shuffle = true, NormalizeFeatures = NormalizeOption.Yes
            });

            PredictionModel <SentimentData, SentimentPrediction> model = pipeline.Train <SentimentData, SentimentPrediction>();

            IEnumerable <SentimentData> sentiments = new[]
            {
                new SentimentData
                {
                    SentimentText = "I hated the movie."
                },
                new SentimentData
                {
                    SentimentText = "The movie was entertaining the whole time, i really enjoyed it."
                }
            };

            IEnumerable <SentimentPrediction> predictions = model.Predict(sentiments);

            foreach (var item in predictions)
            {
                Console.WriteLine($"Prediction: {(item.Sentiment ? "Positive" : "Negative")}");
            }

            var evulatorTrained = new BinaryClassificationEvaluator();
            BinaryClassificationMetrics metricsTrained = evulatorTrained.Evaluate(model, loader);

            Console.WriteLine("ACCURACY OF MODEL ON TRAINED DATA: " + metricsTrained.Accuracy);

            model.WriteAsync(trainedModelPath);

            Console.Read();
        }
Example #27
0
        private static PredictionModel <NodeData, ClusterPrediction> TrainTheModel()
        {
            Console.WriteLine();
            Console.WriteLine("Starting Machine Learning...");
            PredictionModel <NodeData, ClusterPrediction> model = Train();

            model.WriteAsync(_modelPath).Wait();
            var prediction = model.Predict(TestNodeData.RandomNode);

            Console.WriteLine($"Cluster: {prediction.PredictedClusterId}");
            Console.WriteLine($"Distances: {string.Join(" ", prediction.Distances)}");
            Console.WriteLine("<<<<< Machine Learning Complete! >>>>>");
            return(model);
        }
Example #28
0
        private static void VisualizeTenPredictionsForTheModel(
            PredictionModel <WineQualitySample, WineQualityPrediction> model,
            string testDataLocation)
        {
            var testData = new WineQualityCsvReader().GetWineQualitySamplesFromCsv(testDataLocation).ToList();

            for (int i = 0; i < 10; i++)
            {
                var prediction = model.Predict(testData[i]);
                Console.WriteLine($"-------------------------------------------------");
                Console.WriteLine($"Predicted : {prediction.PredictedLabel}");
                Console.WriteLine($"Actual:    {testData[i].Label}");
                Console.WriteLine($"-------------------------------------------------");
            }
        }
        public static void Predict(IEnumerable <SentimentData> sentiments, PredictionModel <SentimentData, SentimentPrediction> model)
        {
            IEnumerable <SentimentPrediction> predictions = model.Predict(sentiments);

            Console.WriteLine();
            Console.WriteLine("Sentiment Predictions");
            Console.WriteLine("---------------------");
            var sentimentsAndPredictions = sentiments.Zip(predictions, (sentiment, prediction) => (sentiment, prediction));

            foreach (var item in sentimentsAndPredictions)
            {
                Console.WriteLine($"Sentiment: {item.sentiment.SentimentText} | Prediction: {(item.prediction.Sentiment ? "Positive" : "Negative")}");
            }
            Console.WriteLine();
        }
Example #30
0
        private static void VisualizeTenPredictionsForTheModel(
            PredictionModel <BikeSharingDemandSample, BikeSharingDemandPrediction> model,
            string testDataLocation)
        {
            var testData = new BikeSharingDemandsCsvReader().GetDataFromCsv(testDataLocation).ToList();

            for (int i = 0; i < 10; i++)
            {
                var prediction = model.Predict(testData[i]);
                Console.WriteLine($"-------------------------------------------------");
                Console.WriteLine($"Predicted : {prediction.PredictedCount}");
                Console.WriteLine($"Actual:    {testData[i].Count}");
                Console.WriteLine($"-------------------------------------------------");
            }
        }