/// <summary> /// Creates the instance and initializes it from given xml element. /// </summary> /// <param name="readoutUnitElem"> /// Xml data containing the settings. /// </param> public ReadoutUnitSettings(XElement readoutUnitElem) { Name = readoutUnitElem.Attribute("name").Value; TaskType = CommonEnums.ParseTaskType(readoutUnitElem.Attribute("task").Value); //Net settings List <XElement> netSettingsElems = new List <XElement>(); netSettingsElems.AddRange(readoutUnitElem.Descendants("ff")); netSettingsElems.AddRange(readoutUnitElem.Descendants("pp")); if (netSettingsElems.Count != 1) { throw new Exception("Only one network configuration can be specified in readout unit settings."); } if (netSettingsElems.Count == 0) { throw new Exception("Network configuration is not specified in readout unit settings."); } XElement netSettingsElem = netSettingsElems[0]; //FF? if (netSettingsElem.Name.LocalName == "ff") { NetType = ReadoutUnitNetworkType.FF; NetSettings = new FeedForwardNetworkSettings(netSettingsElem); OutputRange = ((FeedForwardNetworkSettings)NetSettings).OutputRange.DeepClone(); } else { //PP NetType = ReadoutUnitNetworkType.PP; NetSettings = new ParallelPerceptronSettings(netSettingsElem); OutputRange = ((ParallelPerceptronSettings)NetSettings).OutputRange.DeepClone(); } return; }
/// <summary> /// Creates the instance and initializes it from given xml element. /// </summary> /// <param name="readoutUnitElem"> /// Xml data containing the settings. /// </param> public ReadoutUnitSettings(XElement readoutUnitElem) { RegressionAttempts = int.Parse(readoutUnitElem.Attribute("attempts").Value); RegressionAttemptEpochs = int.Parse(readoutUnitElem.Attribute("attemptEpochs").Value); //Net settings List <XElement> netSettingsElems = new List <XElement>(); netSettingsElems.AddRange(readoutUnitElem.Descendants("ff")); netSettingsElems.AddRange(readoutUnitElem.Descendants("pp")); if (netSettingsElems.Count != 1) { throw new Exception("Only one network configuration can be specified in readout unit settings."); } if (netSettingsElems.Count == 0) { throw new Exception("Network configuration is not specified in readout unit settings."); } XElement netSettingsElem = netSettingsElems[0]; //FF? if (netSettingsElem.Name == "ff") { NetType = ReadoutUnitNetworkType.FF; NetSettings = new FeedForwardNetworkSettings(netSettingsElem); } else { //PP NetType = ReadoutUnitNetworkType.PP; NetSettings = new ParallelPerceptronSettings(netSettingsElem); } return; }
/// <summary> /// Creates new network and associated trainer. /// </summary> /// <param name="settings">Non-recurrent-network settings</param> /// <param name="trainingInputVectors">Collection of training input samples</param> /// <param name="trainingOutputVectors">Collection of training output (desired) samples</param> /// <param name="rand">Random object to be used</param> /// <param name="net">Created network</param> /// <param name="trainer">Created associated trainer</param> public static void CreateNetworkAndTrainer(INonRecurrentNetworkSettings settings, List <double[]> trainingInputVectors, List <double[]> trainingOutputVectors, Random rand, out INonRecurrentNetwork net, out INonRecurrentNetworkTrainer trainer ) { if (IsFF(settings)) { //Feed forward network FeedForwardNetworkSettings netCfg = (FeedForwardNetworkSettings)settings; FeedForwardNetwork ffn = new FeedForwardNetwork(trainingInputVectors[0].Length, trainingOutputVectors[0].Length, netCfg); net = ffn; if (netCfg.TrainerCfg.GetType() == typeof(QRDRegrTrainerSettings)) { trainer = new QRDRegrTrainer(ffn, trainingInputVectors, trainingOutputVectors, (QRDRegrTrainerSettings)netCfg.TrainerCfg, rand); } else if (netCfg.TrainerCfg.GetType() == typeof(RidgeRegrTrainerSettings)) { trainer = new RidgeRegrTrainer(ffn, trainingInputVectors, trainingOutputVectors, (RidgeRegrTrainerSettings)netCfg.TrainerCfg); } else if (netCfg.TrainerCfg.GetType() == typeof(ElasticRegrTrainerSettings)) { trainer = new ElasticRegrTrainer(ffn, trainingInputVectors, trainingOutputVectors, (ElasticRegrTrainerSettings)netCfg.TrainerCfg); } else if (netCfg.TrainerCfg.GetType() == typeof(RPropTrainerSettings)) { trainer = new RPropTrainer(ffn, trainingInputVectors, trainingOutputVectors, (RPropTrainerSettings)netCfg.TrainerCfg, rand); } else { throw new ArgumentException($"Unknown trainer {netCfg.TrainerCfg}"); } } else if (IsPP(settings)) { //Parallel perceptron network //Check output if (trainingOutputVectors[0].Length != 1) { throw new InvalidOperationException($"Can't create ParallelPerceptron. Only single output value is allowed."); } ParallelPerceptronSettings netCfg = (ParallelPerceptronSettings)settings; ParallelPerceptron ppn = new ParallelPerceptron(trainingInputVectors[0].Length, netCfg); net = ppn; trainer = new PDeltaRuleTrainer(ppn, trainingInputVectors, trainingOutputVectors, netCfg.PDeltaRuleTrainerCfg, rand); } else { throw new InvalidOperationException($"Unknown network settings"); } net.RandomizeWeights(rand); return; }
/// <summary> /// Creates the instance and initializes it from given xml element. /// </summary> /// <param name="readoutUnitElem"> /// Xml data containing the settings. /// </param> public ReadoutUnitSettings(XElement readoutUnitElem) { //Name Name = readoutUnitElem.Attribute("name").Value; //Task and filter XElement taskElem = readoutUnitElem.Descendants().First(); if (taskElem.Name.LocalName == "forecast") { TaskType = ReadoutUnit.TaskType.Forecast; } else { TaskType = ReadoutUnit.TaskType.Classification; } FeatureFilterCfg = FeatureFilterFactory.LoadSettings(taskElem.Descendants().First()); //Net settings List <XElement> netSettingsElems = new List <XElement>(); netSettingsElems.AddRange(readoutUnitElem.Descendants("ff")); netSettingsElems.AddRange(readoutUnitElem.Descendants("pp")); if (netSettingsElems.Count != 1) { throw new Exception("Only one network configuration can be specified in readout unit settings."); } if (netSettingsElems.Count == 0) { throw new Exception("Network configuration is not specified in readout unit settings."); } XElement netSettingsElem = netSettingsElems[0]; //FF? if (netSettingsElem.Name.LocalName == "ff") { NetType = ReadoutUnitNetworkType.FF; NetSettings = new FeedForwardNetworkSettings(netSettingsElem); OutputRange = ((FeedForwardNetworkSettings)NetSettings).OutputRange.DeepClone(); } else { //PP NetType = ReadoutUnitNetworkType.PP; NetSettings = new ParallelPerceptronSettings(netSettingsElem); OutputRange = ((ParallelPerceptronSettings)NetSettings).OutputRange.DeepClone(); } return; }
private static void CreateNetAndTreainer(ReadoutLayerSettings.ReadoutUnitSettings settings, List <double[]> trainingPredictorsCollection, List <double[]> trainingIdealOutputsCollection, Random rand, out INonRecurrentNetwork net, out INonRecurrentNetworkTrainer trainer ) { if (settings.NetType == ReadoutLayerSettings.ReadoutUnitSettings.ReadoutUnitNetworkType.FF) { FeedForwardNetworkSettings netCfg = (FeedForwardNetworkSettings)settings.NetSettings; FeedForwardNetwork ffn = new FeedForwardNetwork(trainingPredictorsCollection[0].Length, 1, netCfg); net = ffn; if (netCfg.TrainerCfg.GetType() == typeof(QRDRegrTrainerSettings)) { trainer = new QRDRegrTrainer(ffn, trainingPredictorsCollection, trainingIdealOutputsCollection, (QRDRegrTrainerSettings)netCfg.TrainerCfg, rand); } else if (netCfg.TrainerCfg.GetType() == typeof(RidgeRegrTrainerSettings)) { trainer = new RidgeRegrTrainer(ffn, trainingPredictorsCollection, trainingIdealOutputsCollection, (RidgeRegrTrainerSettings)netCfg.TrainerCfg, rand); } else if (netCfg.TrainerCfg.GetType() == typeof(ElasticRegrTrainerSettings)) { trainer = new ElasticRegrTrainer(ffn, trainingPredictorsCollection, trainingIdealOutputsCollection, (ElasticRegrTrainerSettings)netCfg.TrainerCfg); } else if (netCfg.TrainerCfg.GetType() == typeof(RPropTrainerSettings)) { trainer = new RPropTrainer(ffn, trainingPredictorsCollection, trainingIdealOutputsCollection, (RPropTrainerSettings)netCfg.TrainerCfg, rand); } else { throw new ArgumentException($"Unknown trainer {netCfg.TrainerCfg}"); } } else { ParallelPerceptronSettings netCfg = (ParallelPerceptronSettings)settings.NetSettings; ParallelPerceptron ppn = new ParallelPerceptron(trainingPredictorsCollection[0].Length, netCfg); net = ppn; trainer = new PDeltaRuleTrainer(ppn, trainingPredictorsCollection, trainingIdealOutputsCollection, netCfg.PDeltaRuleTrainerCfg, rand); } net.RandomizeWeights(rand); return; }
private static void CreateNetAndTreainer(ReadoutLayerSettings.ReadoutUnitSettings settings, List <double[]> trainingPredictorsCollection, List <double[]> trainingIdealOutputsCollection, Random rand, out INonRecurrentNetwork net, out INonRecurrentNetworkTrainer trainer ) { if (settings.NetType == ReadoutLayerSettings.ReadoutUnitSettings.ReadoutUnitNetworkType.FF) { FeedForwardNetworkSettings netCfg = (FeedForwardNetworkSettings)settings.NetSettings; FeedForwardNetwork ffn = new FeedForwardNetwork(trainingPredictorsCollection[0].Length, 1, netCfg); net = ffn; switch (netCfg.RegressionMethod) { case FeedForwardNetworkSettings.TrainingMethodType.Linear: trainer = new LinRegrTrainer(ffn, trainingPredictorsCollection, trainingIdealOutputsCollection, settings.RegressionAttemptEpochs, rand, netCfg.LinRegrTrainerCfg); break; case FeedForwardNetworkSettings.TrainingMethodType.Resilient: trainer = new RPropTrainer(ffn, trainingPredictorsCollection, trainingIdealOutputsCollection, netCfg.RPropTrainerCfg); break; default: throw new ArgumentException($"Not supported regression method {netCfg.RegressionMethod}"); } } else { ParallelPerceptronSettings netCfg = (ParallelPerceptronSettings)settings.NetSettings; ParallelPerceptron ppn = new ParallelPerceptron(trainingPredictorsCollection[0].Length, netCfg); net = ppn; trainer = new PDeltaRuleTrainer(ppn, trainingPredictorsCollection, trainingIdealOutputsCollection, netCfg.PDeltaRuleTrainerCfg); } net.RandomizeWeights(rand); return; }