Example #1
0
        public override object SimulateData(object inputs, int simSeed)
        {
            var times = inputs as List <DateTime>;

            if (times == null)
            {
                return(null); // inputs should be a list of DateTimes
            }
            int n         = times.Count;
            var simulated = new TimeSeries();

            var randomSource = new Palf(simSeed);
            var stdnormal    = new Normal();

            stdnormal.RandomSource = randomSource;

            double          mVar = GetVariance(Parameters);
            Vector <double> ss   = Vector <double> .Build.Dense(n);

            for (int i = 0; i < n; ++i)
            {
                double variance = GetConditionalSig2(i, simulated, ss, Parameters, mVar);
                double simLR    = stdnormal.RandomSource.NextDouble() * Math.Sqrt(variance);
                simulated.Add(times[i], simLR, false);
            }

            simulated.Title       = "Simulation";
            simulated.Description = "Simulation from " + Description;
            return(simulated);
        }
Example #2
0
        /// <summary>
        /// Run example
        /// </summary>
        /// <seealso cref="http://en.wikipedia.org/wiki/Random_number_generation">Random number generation</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Linear_congruential_generator">Linear congruential generator</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Mersenne_twister">Mersenne twister</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Lagged_Fibonacci_generator">Lagged Fibonacci generator</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Xorshift">Xorshift</seealso>
        public void Run()
        {
            // All RNG classes in MathNet have next counstructors:
            // - RNG(int seed, bool threadSafe): initializes a new instance with specific seed value and thread safe property
            // - RNG(int seed): iуууnitializes a new instance with specific seed value. Thread safe property is set to Control.ThreadSafeRandomNumberGenerators
            // - RNG(bool threadSafe) : initializes a new instance with the seed value set to DateTime.Now.Ticks and specific thread safe property
            // - RNG(bool threadSafe) : initializes a new instance with the seed value set to DateTime.Now.Ticks and thread safe property set to Control.ThreadSafeRandomNumberGenerators

            // All RNG classes in MathNet have next methods to produce random values:
            // - double[] NextDouble(int n): returns an "n"-size array of uniformly distributed random doubles in the interval [0.0,1.0];
            // - int Next(): returns a nonnegative random number;
            // - int Next(int maxValue): returns a random number less then a specified maximum;
            // - int Next(int minValue, int maxValue): returns a random number within a specified range;
            // - void NextBytes(byte[] buffer): fills the elements of a specified array of bytes with random numbers;

            // All RNG classes in MathNet have next extension methods to produce random values:
            // - long NextInt64(): returns a nonnegative random number less than "Int64.MaxValue";
            // - int NextFullRangeInt32(): returns a random number of the full Int32 range;
            // - long NextFullRangeInt64(): returns a random number of the full Int64 range;
            // - decimal NextDecimal(): returns a nonnegative decimal floating point random number less than 1.0;

            // 1. Multiplicative congruential generator using a modulus of 2^31-1 and a multiplier of 1132489760
            var mcg31M1 = new Mcg31m1(1);

            Console.WriteLine(@"1. Generate 10 random double values using Multiplicative congruential generator with a modulus of 2^31-1 and a multiplier of 1132489760");
            var randomValues = mcg31M1.NextDouble(10);

            for (var i = 0; i < randomValues.Length; i++)
            {
                Console.Write(randomValues[i].ToString("N") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 2. Multiplicative congruential generator using a modulus of 2^59 and a multiplier of 13^13
            var mcg59 = new Mcg59(1);

            Console.WriteLine(@"2. Generate 10 random integer values using Multiplicative congruential generator with a modulus of 2^59 and a multiplier of 13^13");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(mcg59.Next() + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 3. Random number generator using Mersenne Twister 19937 algorithm
            var mersenneTwister = new MersenneTwister(1);

            Console.WriteLine(@"3. Generate 10 random integer values less then 100 using Mersenne Twister 19937 algorithm");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(mersenneTwister.Next(100) + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Multiple recursive generator with 2 components of order 3
            var mrg32K3A = new Mrg32k3a(1);

            Console.WriteLine(@"4. Generate 10 random integer values in range [50;100] using multiple recursive generator with 2 components of order 3");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(mrg32K3A.Next(50, 100) + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 5. Parallel Additive Lagged Fibonacci pseudo-random number generator
            var palf = new Palf(1);

            Console.WriteLine(@"5. Generate 10 random bytes using Parallel Additive Lagged Fibonacci pseudo-random number generator");
            var bytes = new byte[10];

            palf.NextBytes(bytes);
            for (var i = 0; i < bytes.Length; i++)
            {
                Console.Write(bytes[i] + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 6. A random number generator based on the "System.Security.Cryptography.RandomNumberGenerator" class in the .NET library
            var systemCryptoRandomNumberGenerator = new SystemCryptoRandomNumberGenerator();

            Console.WriteLine(@"6. Generate 10 random decimal values using RNG based on the 'System.Security.Cryptography.RandomNumberGenerator'");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(systemCryptoRandomNumberGenerator.NextDecimal().ToString("N") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 7. Wichmann-Hill’s 1982 combined multiplicative congruential generator
            var rngWh1982 = new WH1982();

            Console.WriteLine(@"7. Generate 10 random full Int32 range values using Wichmann-Hill’s 1982 combined multiplicative congruential generator");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(rngWh1982.NextFullRangeInt32() + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 8. Wichmann-Hill’s 2006 combined multiplicative congruential generator.
            var rngWh2006 = new WH2006();

            Console.WriteLine(@"8. Generate 10 random full Int64 range values using Wichmann-Hill’s 2006 combined multiplicative congruential generator");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(rngWh2006.NextFullRangeInt32() + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 9. Multiply-with-carry Xorshift pseudo random number generator
            var xorshift = new Xorshift();

            Console.WriteLine(@"9. Generate 10 random nonnegative values less than Int64.MaxValue using Multiply-with-carry Xorshift pseudo random number generator");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(xorshift.NextInt64() + @" ");
            }

            Console.WriteLine();
        }
Example #3
0
 public void StaticSamplesConsistent()
 {
     Assert.That(Palf.Doubles(1000, 1), Is.EqualTo(new Palf(1).NextDoubles(1000)).Within(1e-12).AsCollection);
 }
Example #4
0
        public override object SimulateData(object inputs, int randomSeed)
        {
            var times = inputs as List <DateTime>;

            if (times == null)
            {
                return(null); // inputs should be a list of DateTimes
            }
            // Simulation here uses the Durbin-Levinson recursions to simulate from
            // successive one-step predictive d-ns.
            // (This works for long-memory processes as well, unlike the obvious constructive approach for ARMA models.)

            int             nn  = times.Count;
            Vector <double> acf = ComputeACF(nn + 1, false);
            var             nu  = Vector <double> .Build.Dense(nn);

            var olda = Vector <double> .Build.Dense(nn);

            var a = Vector <double> .Build.Dense(nn);

            var simd = Vector <double> .Build.Dense(nn);

            var rs = new Palf(randomSeed);
            var sd = new Normal();//new StandardDistribution(rs);

            sd.RandomSource = rs;

            nu[0]   = acf[0]; // nu(0) = 1-step pred. variance of X(0)
            simd[0] = sd.RandomSource.NextDouble() * Math.Sqrt(nu[0]);

            for (int t = 1; t < nn; ++t)
            {
                for (int j = 0; j < nn; ++j)
                {
                    olda[j] = a[j];
                }

                // compute the new a vector
                double sum = 0.0;
                for (int j = 1; j < t; ++j)
                {
                    sum += olda[j - 1] * acf[t - j];
                }
                a[t - 1] = 1 / nu[t - 1] * (acf[t] - sum);
                for (int j = 0; j < t - 1; ++j)
                {
                    a[j] = olda[j] - a[t - 1] * olda[t - 2 - j];
                }

                // update nu
                nu[t] = nu[t - 1] * (1 - a[t - 1] * a[t - 1]);

                // compute xhat
                sum = 0.0;
                for (int j = 0; j < t; ++j)
                {
                    sum += a[j] * simd[t - 1 - j];
                }
                simd[t] = sd.RandomSource.NextDouble() * Math.Sqrt(nu[t]) + sum;
            }

            var simulated = new TimeSeries
            {
                Title       = "Simul.",
                Description = "Simulation from " + Description
            };

            for (int i = 0; i < nn; ++i)
            {
                simulated.Add(times[i], simd[i] + Mu, false);
            }

            return(simulated);
        }
Example #5
0
 public void ThrowsArgumentExceptionWhenLongLagIsNotGreaterThanShortLag()
 {
     var random = new Palf(1, true, 10, 10);
 }
Example #6
0
 public void ThrowsArgumentExceptionWhenShortLagIsNonPositive()
 {
     var random = new Palf(1, true, 0, 10);
 }