public void getPhoton(double randX1, double randY1, double randX2, double randY2, Point3 p, Vector3 dir, Color power) { float z = (float)(1 - 2 * randX2); float r = (float)Math.Sqrt(Math.Max(0, 1 - z * z)); float phi = (float)(2 * Math.PI * randY2); float x = r * (float)Math.Cos(phi); float y = r * (float)Math.Sin(phi); p.x = center.x + x * radius; p.y = center.y + y * radius; p.z = center.z + z * radius; OrthoNormalBasis basis = OrthoNormalBasis.makeFromW(new Vector3(x, y, z)); phi = (float)(2 * Math.PI * randX1); float cosPhi = (float)Math.Cos(phi); float sinPhi = (float)Math.Sin(phi); float sinTheta = (float)Math.Sqrt(randY1); float cosTheta = (float)Math.Sqrt(1 - randY1); dir.x = cosPhi * sinTheta; dir.y = sinPhi * sinTheta; dir.z = cosTheta; basis.transform(dir); power.set(radiance); power.mul((float)(Math.PI * Math.PI * 4 * r2)); }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); Instance parent = state.getInstance(); // get local point Point3 p = state.transformWorldToObject(state.getPoint()); // compute local normal float deriv = p.x * p.x + p.y * p.y + p.z * p.z - ri2 - ro2; state.getNormal().set(p.x * deriv, p.y * deriv, p.z * deriv + 2 * ro2 * p.z); state.getNormal().normalize(); double phi = Math.Asin(MathUtils.clamp(p.z / ri, -1, 1)); double theta = Math.Atan2(p.y, p.x); if (theta < 0) { theta += 2 * Math.PI; } state.getUV().x = (float)(theta / (2 * Math.PI)); state.getUV().y = (float)((phi + Math.PI / 2) / Math.PI); state.setShader(parent.getShader(0)); state.setModifier(parent.getModifier(0)); // into world space Vector3 worldNormal = state.transformNormalObjectToWorld(state.getNormal()); state.getNormal().set(worldNormal); state.getNormal().normalize(); state.getGeoNormal().set(state.getNormal()); // make basis in world space state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); }
public DirectionalSpotlight() { src = new Point3(0, 0, 0); dir = new Vector3(0, 0, -1); dir.normalize(); basis = OrthoNormalBasis.makeFromW(dir); r = 1; r2 = r * r; radiance = Color.WHITE; }
public bool Update(ParameterList pl, SunflowAPI api) { src = pl.getPoint("source", src); dir = pl.getVector("dir", dir); dir.normalize(); r = pl.getFloat("radius", r); basis = OrthoNormalBasis.makeFromW(dir); r2 = r * r; radiance = pl.getColor("radiance", radiance); return(true); }
/** * Computes a phong specular response to the current light samples and * global illumination. * * @param spec specular color * @param power phong exponent * @param numRays number of glossy rays to trace * @return shaded color */ public Color specularPhong(Color spec, float power, int numRays) { // integrate a phong specular function Color lr = Color.black(); if (!includeSpecular || spec.isBlack()) { return(lr); } // reflected direction float dn = 2 * cosND; Vector3 refDir = new Vector3(); refDir.x = (dn * n.x) + r.dx; refDir.y = (dn * n.y) + r.dy; refDir.z = (dn * n.z) + r.dz; // direct lighting foreach (LightSample sample in this) { float cosNL = sample.dot(n); float cosLR = sample.dot(refDir); if (cosLR > 0) { lr.madd(cosNL * (float)Math.Pow(cosLR, power), sample.getSpecularRadiance()); } } // indirect lighting if (numRays > 0) { int numSamples = getDepth() == 0 ? numRays : 1; OrthoNormalBasis onb = OrthoNormalBasis.makeFromW(refDir); float mul = (2.0f * (float)Math.PI / (power + 1)) / numSamples; for (int i = 0; i < numSamples; i++) { // specular indirect lighting double r1 = getRandom(i, 0, numSamples); double r2 = getRandom(i, 1, numSamples); double u = 2 * Math.PI * r1; double s = (float)Math.Pow(r2, 1 / (power + 1)); double s1 = (float)Math.Sqrt(1 - s * s); Vector3 w = new Vector3((float)(Math.Cos(u) * s1), (float)(Math.Sin(u) * s1), (float)s); w = onb.transform(w, new Vector3()); float wn = Vector3.dot(w, n); if (wn > 0) { lr.madd(wn * mul, traceGlossy(new Ray(p, w), i)); } } } lr.mul(spec).mul((power + 2) / (2.0f * (float)Math.PI)); return(lr); }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); Instance parent = state.getInstance(); Vector3 worldNormal = state.transformNormalObjectToWorld(normal); state.getNormal().set(worldNormal); state.getGeoNormal().set(worldNormal); state.setShader(parent.getShader(0)); state.setModifier(parent.getModifier(0)); Point3 p = state.transformWorldToObject(state.getPoint()); float hu, hv; switch (k) { case 0: { hu = p.y; hv = p.z; break; } case 1: { hu = p.z; hv = p.x; break; } case 2: { hu = p.x; hv = p.y; break; } default: hu = hv = 0; break; } state.getUV().x = hu * bnu + hv * bnv + bnd; state.getUV().y = hu * cnu + hv * cnv + cnd; state.setBasis(OrthoNormalBasis.makeFromW(normal)); }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); int n = state.getPrimitiveID(); /* * * * switch (n) * { * case 0: * state.getNormal().set(new Vector3(1, 0, 0)); * break; * case 1: * state.getNormal().set(new Vector3(-1, 0, 0)); * break; * case 2: * state.getNormal().set(new Vector3(0, 1, 0)); * break; * case 3: * state.getNormal().set(new Vector3(0, -1, 0)); * break; * case 4: * state.getNormal().set(new Vector3(0, 0, 1)); * break; * case 5: * state.getNormal().set(new Vector3(0, 0, -1)); * break; * default: * state.getNormal().set(new Vector3(0, 0, 0)); * break; * } * */ state.getNormal().set(normalVectors[n]); state.getGeoNormal().set(state.getNormal()); state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); state.setShader(state.getInstance().getShader(0)); state.setModifier(state.getInstance().getModifier(0)); }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); Instance parent = state.getInstance(); Vector3 normal; switch (state.getPrimitiveID()) { case 0: normal = new Vector3(-1, 0, 0); break; case 1: normal = new Vector3(1, 0, 0); break; case 2: normal = new Vector3(0, -1, 0); break; case 3: normal = new Vector3(0, 1, 0); break; case 4: normal = new Vector3(0, 0, -1); break; case 5: normal = new Vector3(0, 0, 1); break; default: normal = new Vector3(0, 0, 0); break; } state.getNormal().set(state.transformNormalObjectToWorld(normal)); state.getGeoNormal().set(state.getNormal()); state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); state.setShader(parent.getShader(0)); state.setModifier(parent.getModifier(0)); }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); Instance parent = state.getInstance(); Point3 n = state.transformWorldToObject(state.getPoint()); state.getNormal().set(n.x * (2 * n.x * n.x - 1), n.y * (2 * n.y * n.y - 1), n.z * (2 * n.z * n.z - 1)); state.getNormal().normalize(); state.setShader(parent.getShader(0)); state.setModifier(parent.getModifier(0)); // into world space Vector3 worldNormal = state.transformNormalObjectToWorld(state.getNormal()); state.getNormal().set(worldNormal); state.getNormal().normalize(); state.getGeoNormal().set(state.getNormal()); // create basis in world space state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); }
public bool update(ParameterList pl, SunflowAPI api) { Vector3 up = pl.getVector("up", null); Vector3 east = pl.getVector("east", null); if (up != null && east != null) { basis = OrthoNormalBasis.makeFromWV(up, east); } else if (up != null) { basis = OrthoNormalBasis.makeFromW(up); } numSkySamples = pl.getInt("samples", numSkySamples); sunDirWorld = pl.getVector("sundir", sunDirWorld); turbidity = pl.getFloat("turbidity", turbidity); // recompute model initSunSky(); return(true); }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); int n = state.getPrimitiveID(); switch (n) { case 0: state.getNormal().set(new Vector3(1, 0, 0)); break; case 1: state.getNormal().set(new Vector3(-1, 0, 0)); break; case 2: state.getNormal().set(new Vector3(0, 1, 0)); break; case 3: state.getNormal().set(new Vector3(0, -1, 0)); break; case 4: state.getNormal().set(new Vector3(0, 0, 1)); break; case 5: state.getNormal().set(new Vector3(0, 0, -1)); break; default: state.getNormal().set(new Vector3(0, 0, 0)); break; } state.getGeoNormal().set(state.getNormal()); state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); state.setShader(state.getInstance().getShader(0)); state.setModifier(state.getInstance().getModifier(0)); }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); Instance parent = state.getInstance(); float u = state.getU(); float v = state.getV(); float[] bu = bernstein(u); float[] bdu = bernsteinDeriv(u); float[] bv = bernstein(v); float[] bdv = bernsteinDeriv(v); getPatchPoint(u, v, patches[state.getPrimitiveID()], bu, bv, bdu, bdv, new Point3(), state.getNormal()); state.getNormal().set(parent.transformNormalObjectToWorld(state.getNormal())); state.getNormal().normalize(); state.getGeoNormal().set(state.getNormal()); state.getUV().set(u, v); state.setShader(parent.getShader(0)); state.setModifier(parent.getModifier(0)); // FIXME: use actual derivatives to create basis state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); }
public void modify(ShadingState state) { Point3 p = state.transformWorldToObject(state.getPoint()); p.x *= size; p.y *= size; p.z *= size; Vector3 normal = state.transformNormalWorldToObject(state.getNormal()); double f0 = f(p.x, p.y, p.z); double fx = f(p.x + .0001, p.y, p.z); double fy = f(p.x, p.y + .0001, p.z); double fz = f(p.x, p.y, p.z + .0001); normal.x -= scale * (float)((fx - f0) / .0001); normal.y -= scale * (float)((fy - f0) / .0001); normal.z -= scale * (float)((fz - f0) / .0001); normal.normalize(); state.getNormal().set(state.transformNormalObjectToWorld(normal)); state.getNormal().normalize(); state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); }
public void getPhoton(double randX1, double randY1, double randX2, double randY2, Point3 p, Vector3 dir, Color power) { double rnd = randX1 * totalArea; int j = areas.Length - 1; for (int i = 0; i < areas.Length; i++) { if (rnd < areas[i]) { j = i; break; } rnd -= areas[i]; // try next triangle } rnd /= areas[j]; randX1 = rnd; double s = Math.Sqrt(1 - randX2); float u = (float)(randY2 * s); float v = (float)(1 - s); float w = 1 - u - v; int tri3 = j * 3; int index0 = 3 * triangles[tri3 + 0]; int index1 = 3 * triangles[tri3 + 1]; int index2 = 3 * triangles[tri3 + 2]; p.x = w * points[index0 + 0] + u * points[index1 + 0] + v * points[index2 + 0]; p.y = w * points[index0 + 1] + u * points[index1 + 1] + v * points[index2 + 1]; p.z = w * points[index0 + 2] + u * points[index1 + 2] + v * points[index2 + 2]; p.x += 0.001f * ngs[j].x; p.y += 0.001f * ngs[j].y; p.z += 0.001f * ngs[j].z; OrthoNormalBasis onb = OrthoNormalBasis.makeFromW(ngs[j]); u = (float)(2 * Math.PI * randX1); s = Math.Sqrt(randY1); onb.transform(new Vector3((float)(Math.Cos(u) * s), (float)(Math.Sin(u) * s), (float)(Math.Sqrt(1 - randY1))), dir); Color.mul((float)Math.PI * areas[j], radiance, power); }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); Point3 localPoint = state.transformWorldToObject(state.getPoint()); localPoint.x -= particles[3 * state.getPrimitiveID() + 0]; localPoint.y -= particles[3 * state.getPrimitiveID() + 1]; localPoint.z -= particles[3 * state.getPrimitiveID() + 2]; state.getNormal().set(localPoint.x, localPoint.y, localPoint.z); state.getNormal().normalize(); state.setShader(state.getInstance().getShader(0)); state.setModifier(state.getInstance().getModifier(0)); // into object space Vector3 worldNormal = state.transformNormalObjectToWorld(state.getNormal()); state.getNormal().set(worldNormal); state.getNormal().normalize(); state.getGeoNormal().set(state.getNormal()); state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); }
public void getPhoton(double randX1, double randY1, double randX2, double randY2, Point3 p, Vector3 dir, Color power) { double s = Math.Sqrt(1 - randX2); float u = (float)(randY2 * s); float v = (float)(1 - s); float w = 1 - u - v; int index0 = 3 * meshlight.triangles[tri3 + 0]; int index1 = 3 * meshlight.triangles[tri3 + 1]; int index2 = 3 * meshlight.triangles[tri3 + 2]; p.x = w * meshlight.points[index0 + 0] + u * meshlight.points[index1 + 0] + v * meshlight.points[index2 + 0]; p.y = w * meshlight.points[index0 + 1] + u * meshlight.points[index1 + 1] + v * meshlight.points[index2 + 1]; p.z = w * meshlight.points[index0 + 2] + u * meshlight.points[index1 + 2] + v * meshlight.points[index2 + 2]; p.x += 0.001f * ng.x; p.y += 0.001f * ng.y; p.z += 0.001f * ng.z; OrthoNormalBasis onb = OrthoNormalBasis.makeFromW(ng); u = (float)(2 * Math.PI * randX1); s = Math.Sqrt(randY1); onb.transform(new Vector3((float)(Math.Cos(u) * s), (float)(Math.Sin(u) * s), (float)(Math.Sqrt(1 - randY1))), dir); Color.mul((float)Math.PI * area, meshlight.radiance, power); }
public void ScatterPhoton(ShadingState state, Color power) { int side = state.getPrimitiveID(); Color kd = null; switch (side) { case 0: kd = left; break; case 1: kd = right; break; case 3: kd = back; break; case 4: kd = bottom; break; case 5: float lx = state.getPoint().x; float ly = state.getPoint().y; if (lx >= lxmin && lx < lxmax && ly >= lymin && ly < lymax && state.getRay().dz > 0) { return; } kd = top; break; default: Debug.Assert(false); break; } // make sure we are on the right side of the material if (Vector3.dot(state.getNormal(), state.getRay().getDirection()) > 0) { state.getNormal().negate(); state.getGeoNormal().negate(); } state.storePhoton(state.getRay().getDirection(), power, kd); double avg = kd.getAverage(); double rnd = state.getRandom(0, 0, 1); if (rnd < avg) { // photon is scattered power.mul(kd).mul(1 / (float)avg); OrthoNormalBasis onb = OrthoNormalBasis.makeFromW(state.getNormal()); double u = 2 * Math.PI * rnd / avg; double v = state.getRandom(0, 1, 1); float s = (float)Math.Sqrt(v); float s1 = (float)Math.Sqrt(1.0 - v); Vector3 w = new Vector3((float)Math.Cos(u) * s, (float)Math.Sin(u) * s, s1); w = onb.transform(w, new Vector3()); state.traceDiffusePhoton(new Ray(state.getPoint(), w), power); } }
public void prepareShadingState(ShadingState state) { state.init(); state.getRay().getPoint(state.getPoint()); Instance parent = state.getInstance(); // compute local normal Point3 p = state.transformWorldToObject(state.getPoint()); float gx1w = p.x - DELTA; float gx1x = p.y; float gx1y = p.z; float gx1z = 0; float gx2w = p.x + DELTA; float gx2x = p.y; float gx2y = p.z; float gx2z = 0; float gy1w = p.x; float gy1x = p.y - DELTA; float gy1y = p.z; float gy1z = 0; float gy2w = p.x; float gy2x = p.y + DELTA; float gy2y = p.z; float gy2z = 0; float gz1w = p.x; float gz1x = p.y; float gz1y = p.z - DELTA; float gz1z = 0; float gz2w = p.x; float gz2x = p.y; float gz2y = p.z + DELTA; float gz2z = 0; for (int i = 0; i < maxIterations; i++) { { // z = z*z + c float nw = gx1w * gx1w - gx1x * gx1x - gx1y * gx1y - gx1z * gx1z + cw; gx1x = 2 * gx1w * gx1x + cx; gx1y = 2 * gx1w * gx1y + cy; gx1z = 2 * gx1w * gx1z + cz; gx1w = nw; } { // z = z*z + c float nw = gx2w * gx2w - gx2x * gx2x - gx2y * gx2y - gx2z * gx2z + cw; gx2x = 2 * gx2w * gx2x + cx; gx2y = 2 * gx2w * gx2y + cy; gx2z = 2 * gx2w * gx2z + cz; gx2w = nw; } { // z = z*z + c float nw = gy1w * gy1w - gy1x * gy1x - gy1y * gy1y - gy1z * gy1z + cw; gy1x = 2 * gy1w * gy1x + cx; gy1y = 2 * gy1w * gy1y + cy; gy1z = 2 * gy1w * gy1z + cz; gy1w = nw; } { // z = z*z + c float nw = gy2w * gy2w - gy2x * gy2x - gy2y * gy2y - gy2z * gy2z + cw; gy2x = 2 * gy2w * gy2x + cx; gy2y = 2 * gy2w * gy2y + cy; gy2z = 2 * gy2w * gy2z + cz; gy2w = nw; } { // z = z*z + c float nw = gz1w * gz1w - gz1x * gz1x - gz1y * gz1y - gz1z * gz1z + cw; gz1x = 2 * gz1w * gz1x + cx; gz1y = 2 * gz1w * gz1y + cy; gz1z = 2 * gz1w * gz1z + cz; gz1w = nw; } { // z = z*z + c float nw = gz2w * gz2w - gz2x * gz2x - gz2y * gz2y - gz2z * gz2z + cw; gz2x = 2 * gz2w * gz2x + cx; gz2y = 2 * gz2w * gz2y + cy; gz2z = 2 * gz2w * gz2z + cz; gz2w = nw; } } float gradX = Length(gx2w, gx2x, gx2y, gx2z) - Length(gx1w, gx1x, gx1y, gx1z); float gradY = Length(gy2w, gy2x, gy2y, gy2z) - Length(gy1w, gy1x, gy1y, gy1z); float gradZ = Length(gz2w, gz2x, gz2y, gz2z) - Length(gz1w, gz1x, gz1y, gz1z); Vector3 n = new Vector3(gradX, gradY, gradZ); state.getNormal().set(state.transformNormalObjectToWorld(n)); state.getNormal().normalize(); state.getGeoNormal().set(state.getNormal()); state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); state.getPoint().x += state.getNormal().x *epsilon * 20; state.getPoint().y += state.getNormal().y *epsilon * 20; state.getPoint().z += state.getNormal().z *epsilon * 20; state.setShader(parent.getShader(0)); state.setModifier(parent.getModifier(0)); }
public void modify(ShadingState state) { // apply bump state.getNormal().set(bumpTexture.getBump(state.getUV().x, state.getUV().y, state.getBasis(), scale)); state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); }
public void prepareShadingState(ShadingState state) { state.init(); Instance parent = state.getInstance(); int primID = state.getPrimitiveID(); float u = state.getU(); float v = state.getV(); float w = 1 - u - v; // state.getRay().getPoint(state.getPoint()); int tri = 3 * primID; int index0 = triangleMesh.triangles[tri + 0]; int index1 = triangleMesh.triangles[tri + 1]; int index2 = triangleMesh.triangles[tri + 2]; Point3 v0p = triangleMesh.getPoint(index0); Point3 v1p = triangleMesh.getPoint(index1); Point3 v2p = triangleMesh.getPoint(index2); // get object space point from barycentric coordinates state.getPoint().x = w * v0p.x + u * v1p.x + v * v2p.x; state.getPoint().y = w * v0p.y + u * v1p.y + v * v2p.y; state.getPoint().z = w * v0p.z + u * v1p.z + v * v2p.z; // move into world space state.getPoint().set(state.transformObjectToWorld(state.getPoint())); Vector3 ng = Point3.normal(v0p, v1p, v2p); if (parent != null) { ng = state.transformNormalObjectToWorld(ng); } ng.normalize(); state.getGeoNormal().set(ng); switch (triangleMesh.normals.interp) { case ParameterList.InterpolationType.NONE: case ParameterList.InterpolationType.FACE: { state.getNormal().set(ng); break; } case ParameterList.InterpolationType.VERTEX: { int i30 = 3 * index0; int i31 = 3 * index1; int i32 = 3 * index2; float[] normals = triangleMesh.normals.data; state.getNormal().x = w * normals[i30 + 0] + u * normals[i31 + 0] + v * normals[i32 + 0]; state.getNormal().y = w * normals[i30 + 1] + u * normals[i31 + 1] + v * normals[i32 + 1]; state.getNormal().z = w * normals[i30 + 2] + u * normals[i31 + 2] + v * normals[i32 + 2]; if (parent != null) { state.getNormal().set(state.transformNormalObjectToWorld(state.getNormal())); } state.getNormal().normalize(); break; } case ParameterList.InterpolationType.FACEVARYING: { int idx = 3 * tri; float[] normals = triangleMesh.normals.data; state.getNormal().x = w * normals[idx + 0] + u * normals[idx + 3] + v * normals[idx + 6]; state.getNormal().y = w * normals[idx + 1] + u * normals[idx + 4] + v * normals[idx + 7]; state.getNormal().z = w * normals[idx + 2] + u * normals[idx + 5] + v * normals[idx + 8]; if (parent != null) { state.getNormal().set(state.transformNormalObjectToWorld(state.getNormal())); } state.getNormal().normalize(); break; } } float uv00 = 0, uv01 = 0, uv10 = 0, uv11 = 0, uv20 = 0, uv21 = 0; switch (triangleMesh.uvs.interp) { case ParameterList.InterpolationType.NONE: case ParameterList.InterpolationType.FACE: { state.getUV().x = 0; state.getUV().y = 0; break; } case ParameterList.InterpolationType.VERTEX: { int i20 = 2 * index0; int i21 = 2 * index1; int i22 = 2 * index2; float[] uvs = triangleMesh.uvs.data; uv00 = uvs[i20 + 0]; uv01 = uvs[i20 + 1]; uv10 = uvs[i21 + 0]; uv11 = uvs[i21 + 1]; uv20 = uvs[i22 + 0]; uv21 = uvs[i22 + 1]; break; } case ParameterList.InterpolationType.FACEVARYING: { int idx = tri << 1; float[] uvs = triangleMesh.uvs.data; uv00 = uvs[idx + 0]; uv01 = uvs[idx + 1]; uv10 = uvs[idx + 2]; uv11 = uvs[idx + 3]; uv20 = uvs[idx + 4]; uv21 = uvs[idx + 5]; break; } } if (triangleMesh.uvs.interp != ParameterList.InterpolationType.NONE) { // get exact uv coords and compute tangent vectors state.getUV().x = w * uv00 + u * uv10 + v * uv20; state.getUV().y = w * uv01 + u * uv11 + v * uv21; float du1 = uv00 - uv20; float du2 = uv10 - uv20; float dv1 = uv01 - uv21; float dv2 = uv11 - uv21; Vector3 dp1 = Point3.sub(v0p, v2p, new Vector3()), dp2 = Point3.sub(v1p, v2p, new Vector3()); float determinant = du1 * dv2 - dv1 * du2; if (determinant == 0.0f) { // create basis in world space state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); } else { float invdet = 1 / determinant; // Vector3 dpdu = new Vector3(); // dpdu.x = (dv2 * dp1.x - dv1 * dp2.x) * invdet; // dpdu.y = (dv2 * dp1.y - dv1 * dp2.y) * invdet; // dpdu.z = (dv2 * dp1.z - dv1 * dp2.z) * invdet; Vector3 dpdv = new Vector3(); dpdv.x = (-du2 * dp1.x + du1 * dp2.x) * invdet; dpdv.y = (-du2 * dp1.y + du1 * dp2.y) * invdet; dpdv.z = (-du2 * dp1.z + du1 * dp2.z) * invdet; if (parent != null) { dpdv = state.transformVectorObjectToWorld(dpdv); } // create basis in world space state.setBasis(OrthoNormalBasis.makeFromWV(state.getNormal(), dpdv)); } } else { state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); } int shaderIndex = triangleMesh.faceShaders == null ? 0 : (triangleMesh.faceShaders[primID] & 0xFF); state.setShader(parent.getShader(shaderIndex)); }
public void prepareShadingState(ShadingState state) { state.init(); Instance parent = state.getInstance(); int primID = state.getPrimitiveID(); float u = state.getU(); float v = state.getV(); state.getRay().getPoint(state.getPoint()); int quad = 4 * primID; int index0 = quads[quad + 0]; int index1 = quads[quad + 1]; int index2 = quads[quad + 2]; int index3 = quads[quad + 3]; Point3 v0p = getPoint(index0); Point3 v1p = getPoint(index1); Point3 v2p = getPoint(index2); Point3 v3p = getPoint(index3); float tanux = (1 - v) * (v1p.x - v0p.x) + v * (v2p.x - v3p.x); float tanuy = (1 - v) * (v1p.y - v0p.y) + v * (v2p.y - v3p.y); float tanuz = (1 - v) * (v1p.z - v0p.z) + v * (v2p.z - v3p.z); float tanvx = (1 - u) * (v3p.x - v0p.x) + u * (v2p.x - v1p.x); float tanvy = (1 - u) * (v3p.y - v0p.y) + u * (v2p.y - v1p.y); float tanvz = (1 - u) * (v3p.z - v0p.z) + u * (v2p.z - v1p.z); float nx = tanuy * tanvz - tanuz * tanvy; float ny = tanuz * tanvx - tanux * tanvz; float nz = tanux * tanvy - tanuy * tanvx; Vector3 ng = new Vector3(nx, ny, nz); ng = state.transformNormalObjectToWorld(ng); ng.normalize(); state.getGeoNormal().set(ng); float k00 = (1 - u) * (1 - v); float k10 = u * (1 - v); float k01 = (1 - u) * v; float k11 = u * v; switch (normals.interp) { case ParameterList.InterpolationType.NONE: case ParameterList.InterpolationType.FACE: { state.getNormal().set(ng); break; } case ParameterList.InterpolationType.VERTEX: { int i30 = 3 * index0; int i31 = 3 * index1; int i32 = 3 * index2; int i33 = 3 * index3; float[] normals1 = this.normals.data; state.getNormal().x = k00 * normals1[i30 + 0] + k10 * normals1[i31 + 0] + k11 * normals1[i32 + 0] + k01 * normals1[i33 + 0]; state.getNormal().y = k00 * normals1[i30 + 1] + k10 * normals1[i31 + 1] + k11 * normals1[i32 + 1] + k01 * normals1[i33 + 1]; state.getNormal().z = k00 * normals1[i30 + 2] + k10 * normals1[i31 + 2] + k11 * normals1[i32 + 2] + k01 * normals1[i33 + 2]; state.getNormal().set(state.transformNormalObjectToWorld(state.getNormal())); state.getNormal().normalize(); break; } case ParameterList.InterpolationType.FACEVARYING: { int idx = 3 * quad; float[] normals1 = this.normals.data; state.getNormal().x = k00 * normals1[idx + 0] + k10 * normals1[idx + 3] + k11 * normals1[idx + 6] + k01 * normals1[idx + 9]; state.getNormal().y = k00 * normals1[idx + 1] + k10 * normals1[idx + 4] + k11 * normals1[idx + 7] + k01 * normals1[idx + 10]; state.getNormal().z = k00 * normals1[idx + 2] + k10 * normals1[idx + 5] + k11 * normals1[idx + 8] + k01 * normals1[idx + 11]; state.getNormal().set(state.transformNormalObjectToWorld(state.getNormal())); state.getNormal().normalize(); break; } } float uv00 = 0, uv01 = 0, uv10 = 0, uv11 = 0, uv20 = 0, uv21 = 0, uv30 = 0, uv31 = 0; switch (uvs.interp) { case ParameterList.InterpolationType.NONE: case ParameterList.InterpolationType.FACE: { state.getUV().x = 0; state.getUV().y = 0; break; } case ParameterList.InterpolationType.VERTEX: { int i20 = 2 * index0; int i21 = 2 * index1; int i22 = 2 * index2; int i23 = 2 * index3; float[] uvs1 = this.uvs.data; uv00 = uvs1[i20 + 0]; uv01 = uvs1[i20 + 1]; uv10 = uvs1[i21 + 0]; uv11 = uvs1[i21 + 1]; uv20 = uvs1[i22 + 0]; uv21 = uvs1[i22 + 1]; uv20 = uvs1[i23 + 0]; uv21 = uvs1[i23 + 1]; break; } case ParameterList.InterpolationType.FACEVARYING: { int idx = quad << 1; float[] uvs1 = this.uvs.data; uv00 = uvs1[idx + 0]; uv01 = uvs1[idx + 1]; uv10 = uvs1[idx + 2]; uv11 = uvs1[idx + 3]; uv20 = uvs1[idx + 4]; uv21 = uvs1[idx + 5]; uv30 = uvs1[idx + 6]; uv31 = uvs1[idx + 7]; break; } } if (uvs.interp != ParameterList.InterpolationType.NONE) { // get exact uv coords and compute tangent vectors state.getUV().x = k00 * uv00 + k10 * uv10 + k11 * uv20 + k01 * uv30; state.getUV().y = k00 * uv01 + k10 * uv11 + k11 * uv21 + k01 * uv31; float du1 = uv00 - uv20; float du2 = uv10 - uv20; float dv1 = uv01 - uv21; float dv2 = uv11 - uv21; Vector3 dp1 = Point3.sub(v0p, v2p, new Vector3()), dp2 = Point3.sub(v1p, v2p, new Vector3()); float determinant = du1 * dv2 - dv1 * du2; if (determinant == 0.0f) { // create basis in world space state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); } else { float invdet = 1 / determinant; // Vector3 dpdu = new Vector3(); // dpdu.x = (dv2 * dp1.x - dv1 * dp2.x) * invdet; // dpdu.y = (dv2 * dp1.y - dv1 * dp2.y) * invdet; // dpdu.z = (dv2 * dp1.z - dv1 * dp2.z) * invdet; Vector3 dpdv = new Vector3(); dpdv.x = (-du2 * dp1.x + du1 * dp2.x) * invdet; dpdv.y = (-du2 * dp1.y + du1 * dp2.y) * invdet; dpdv.z = (-du2 * dp1.z + du1 * dp2.z) * invdet; dpdv = state.transformVectorObjectToWorld(dpdv); // create basis in world space state.setBasis(OrthoNormalBasis.makeFromWV(state.getNormal(), dpdv)); } } else { state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); } int shaderIndex = faceShaders == null ? 0 : (faceShaders[primID] & 0xFF); state.setShader(parent.getShader(shaderIndex)); state.setModifier(parent.getModifier(shaderIndex)); }
public void getSamples(ShadingState state) { if (getNumSamples() <= 0) { return; } Vector3 wc = Point3.sub(center, state.getPoint(), new Vector3()); float l2 = wc.LengthSquared(); if (l2 <= r2) { return; // inside the sphere? } // top of the sphere as viewed from the current shading point float topX = wc.x + state.getNormal().x *radius; float topY = wc.y + state.getNormal().y *radius; float topZ = wc.z + state.getNormal().z *radius; if (state.getNormal().dot(topX, topY, topZ) <= 0) { return; // top of the sphere is below the horizon } float cosThetaMax = (float)Math.Sqrt(Math.Max(0, 1 - r2 / Vector3.dot(wc, wc))); OrthoNormalBasis basis = OrthoNormalBasis.makeFromW(wc); int samples = state.getDiffuseDepth() > 0 ? 1 : getNumSamples(); float scale = (float)(2 * Math.PI * (1 - cosThetaMax)); Color c = Color.mul(scale / samples, radiance); for (int i = 0; i < samples; i++) { // random offset on unit square double randX = state.getRandom(i, 0, samples); double randY = state.getRandom(i, 1, samples); // cone sampling double cosTheta = (1 - randX) * cosThetaMax + randX; double sinTheta = Math.Sqrt(1 - cosTheta * cosTheta); double phi = randY * 2 * Math.PI; Vector3 dir = new Vector3((float)(Math.Cos(phi) * sinTheta), (float)(Math.Sin(phi) * sinTheta), (float)cosTheta); basis.transform(dir); // check that the direction of the sample is the same as the // normal float cosNx = Vector3.dot(dir, state.getNormal()); if (cosNx <= 0) { continue; } float ocx = state.getPoint().x - center.x; float ocy = state.getPoint().y - center.y; float ocz = state.getPoint().z - center.z; float qa = Vector3.dot(dir, dir); float qb = 2 * ((dir.x * ocx) + (dir.y * ocy) + (dir.z * ocz)); float qc = ((ocx * ocx) + (ocy * ocy) + (ocz * ocz)) - r2; double[] t = Solvers.solveQuadric(qa, qb, qc); if (t == null) { continue; } LightSample dest = new LightSample(); // compute shadow ray to the sampled point dest.setShadowRay(new Ray(state.getPoint(), dir)); // FIXME: arbitrary bias, should handle as in other places dest.getShadowRay().setMax((float)t[0] - 1e-3f); // prepare sample dest.setRadiance(c, c); dest.traceShadow(state); state.addSample(dest); } }
public void modify(ShadingState state) { // apply normal map state.getNormal().set(normalMap.getNormal(state.getUV().x, state.getUV().y, state.getBasis())); state.setBasis(OrthoNormalBasis.makeFromW(state.getNormal())); }