Example #1
0
    // Create an NBody and check it's mass
    public void EccentricityPrediction()
    {
        const float    mass        = 1000f;
        GameObject     star        = TestSetupUtils.CreateNBody(mass, new Vector3(0, 0, 0));
        NBody          starNbody   = star.GetComponent <NBody>();
        const float    orbitRadius = 10f;
        GameObject     planet      = TestSetupUtils.CreatePlanetInOrbitUniversal(starNbody, 1f, orbitRadius);
        OrbitUniversal orbitU      = planet.GetComponent <OrbitUniversal>();

        OrbitPredictor op = TestSetupUtils.AddOrbitPredictor(planet, star);

        Assert.NotNull(op);

        double[] ecc_values = { 0, 0.1, 0.7, 0.9, 0.99, 1.01, 1.5, 2 };
        foreach (double ecc in ecc_values)
        {
            Debug.LogFormat("#### EccentricityPrediction ecc={0}", ecc);
            orbitU.eccentricity = ecc;
            TestSetupUtils.SetupGravityEngine(star, planet);
            op.TestRunnerSetup();

            OrbitUniversal predictedOrbit = op.GetOrbitUniversal();
            Assert.NotNull(predictedOrbit);
            CompareOrbits(orbitU, predictedOrbit, small);
        }
    }
Example #2
0
    // Create an NBody and check it's mass
    public void CirclePrediction()
    {
        const float    mass        = 1000f;
        GameObject     star        = TestSetupUtils.CreateNBody(mass, new Vector3(0, 0, 0));
        NBody          starNbody   = star.GetComponent <NBody>();
        const float    orbitRadius = 10f;
        GameObject     planet      = TestSetupUtils.CreatePlanetInOrbitUniversal(starNbody, 1f, orbitRadius);
        OrbitUniversal orbitU      = planet.GetComponent <OrbitUniversal>();

        OrbitPredictor op = TestSetupUtils.AddOrbitPredictor(planet, star);

        Assert.NotNull(op);

        double[] p_values = { 10, 100, 1000 };
        foreach (double p in p_values)
        {
            Debug.LogFormat("#### CirclePrediction p={0}", p);
            orbitU.p = p;
            TestSetupUtils.SetupGravityEngine(star, planet);
            op.TestRunnerSetup();

            OrbitUniversal predictedOrbit = op.GetOrbitUniversal();
            Assert.NotNull(predictedOrbit);
            CompareOrbits(orbitU, predictedOrbit, small);
        }
    }
Example #3
0
    // Create an NBody and check it's mass
    public void OmegaUEllipsePrediction()
    {
        const float    mass        = 1000f;
        GameObject     star        = TestSetupUtils.CreateNBody(mass, new Vector3(0, 0, 0));
        NBody          starNbody   = star.GetComponent <NBody>();
        const float    orbitRadius = 10f;
        GameObject     planet      = TestSetupUtils.CreatePlanetInOrbitUniversal(starNbody, 1f, orbitRadius);
        OrbitUniversal orbitU      = planet.GetComponent <OrbitUniversal>();

        // Need a bit of incl, otherwise omegaU comes back as omegaL.
        orbitU.inclination  = 10;
        orbitU.eccentricity = 0.05;

        OrbitPredictor op = TestSetupUtils.AddOrbitPredictor(planet, star);

        Assert.NotNull(op);

        double[] ou_values = { 0, 1, 5, 10, 30, 60, 90, 180, 270, 355, 360 };
        foreach (double ou in ou_values)
        {
            Debug.LogFormat("#### OmegaUPrediction ou={0}", ou);
            orbitU.omega_uc = ou;
            TestSetupUtils.SetupGravityEngine(star, planet);
            op.TestRunnerSetup();

            OrbitUniversal predictedOrbit = op.GetOrbitUniversal();
            Assert.NotNull(predictedOrbit);
            CompareOrbits(orbitU, predictedOrbit, small);
        }
    }
Example #4
0
    // Create an NBody and check it's mass
    public void InclinationPrediction()
    {
        const float    mass        = 1000f;
        GameObject     star        = TestSetupUtils.CreateNBody(mass, new Vector3(0, 0, 0));
        NBody          starNbody   = star.GetComponent <NBody>();
        const float    orbitRadius = 10f;
        GameObject     planet      = TestSetupUtils.CreatePlanetInOrbitUniversal(starNbody, 1f, orbitRadius);
        OrbitUniversal orbitU      = planet.GetComponent <OrbitUniversal>();

        OrbitPredictor op = TestSetupUtils.AddOrbitPredictor(planet, star);

        Assert.NotNull(op);

        double[] incl_values = { 0, 1, 5, 10, 30, 45, 60, 90, 145, 179, 180 };
        foreach (double incl in incl_values)
        {
            Debug.LogFormat("#### InclinationPrediction incl={0}", incl);
            orbitU.inclination = incl;
            TestSetupUtils.SetupGravityEngine(star, planet);
            op.TestRunnerSetup();

            OrbitUniversal predictedOrbit = op.GetOrbitUniversal();
            Assert.NotNull(predictedOrbit);
            CompareOrbits(orbitU, predictedOrbit, small);
        }
    }
Example #5
0
    void Update()
    {
        OrbitUniversal orbitU = orbitPredictor.GetOrbitUniversal();
        float          apogee = (float)orbitU.GetApogee();

        apogee_text.text = string.Format(apogee_str, apogee);
        if (orbitU.eccentricity < 1f)
        {
            float perigee = (float)orbitU.GetPerigee();
            perigee_text.text = string.Format(perigee_str, perigee);
        }
        else
        {
            perigee_text.text = string.Format("     Perigee: N/A");
        }
        e_text.text      = string.Format(ecc_str, orbitU.eccentricity);
        i_text.text      = string.Format(incl_str, orbitU.inclination);
        UOmega_text.text = string.Format(Omega_str, orbitU.omega_uc);
        LOmega_text.text = string.Format(omega_str, orbitU.omega_lc);
    }
    /// <summary>
    /// Computes the transfer and updates all the ghost bodies.
    /// </summary>
    /// <returns></returns>
    private void ComputeTransfer()
    {
        double timeNow = ge.GetPhysicalTimeDouble();

        // First using the transfer time, move the ghost Moon to position at SOI arrival.
        // Call evolve via LockAtTime on the ghostMoon to move it. Set position based on this.
        double t_flight  = tflightFactor * timeHohmann;
        double timeatSoi = timeNow + t_flight;

        ghostMoonOrbit[MOON_SOI_ENTER].LockAtTime(timeatSoi);
        // Determine the moon phase angle
        double moonPhase = ghostMoonSoiEnterOrbitPredictor.GetOrbitUniversal().phase;

        // Place the TLI ship at the user-requested angle wrt planet-moon line
        // Put ghost ship in same orbit geometry as the moon, assuming it is circular. Then
        // can use same phase value.
        // (Ship needs to reach this departure point, it may not even be on the ship orbit
        //  in general).
        ghostShipOrbit[TLI].phase       = shipTLIAngleDeg + (moonPhase + 180f);
        ghostShipOrbit[TLI].inclination = ghostMoonOrbit[MOON_SOI_ENTER].inclination;
        ghostShipOrbit[TLI].omega_lc    = ghostMoonOrbit[MOON_SOI_ENTER].omega_lc;
        ghostShipOrbit[TLI].omega_uc    = ghostMoonOrbit[MOON_SOI_ENTER].omega_uc;
        ghostShipOrbit[TLI].p_inspector = shipOrbit.p;
        ghostShipOrbit[TLI].Init();
        ghostShipOrbit[TLI].LockAtTime(0);

        // Place the SOI enter ship at the user-requested angle in an SOI orbit. Lock at time 0 so the phase
        // is held per the user input.
        ghostShipOrbit[ENTER_SOI].phase       = soiAngleDeg + moonPhase;
        ghostShipOrbit[ENTER_SOI].inclination = soiInclination + shipOrbit.inclination;
        ghostShipOrbit[ENTER_SOI].omega_lc    = ghostMoonOrbit[MOON_SOI_ENTER].omega_lc;
        ghostShipOrbit[ENTER_SOI].omega_uc    = ghostMoonOrbit[MOON_SOI_ENTER].omega_uc;
        ghostShipOrbit[ENTER_SOI].Init();
        ghostShipOrbit[ENTER_SOI].LockAtTime(0);

        // Find the line to the ENTER_SOI position. Ship departs from that line continued through planet
        // at the shipRadius distance (assumes circular ship orbit)
        // TODO: Handle planet not at (0,0,0)
        Vector3d soiEntryPos    = ge.GetPositionDoubleV3(ghostShip[ENTER_SOI]);
        Vector3d planetPos      = ge.GetPositionDoubleV3(planet);
        Vector3d departurePoint = ge.GetPositionDoubleV3(ghostShip[TLI]);

        // Use Lambert to find the departure velocity to get from departure to soiEntry
        // Since we need 180 degrees from departure to arrival, use LambertBattin
        lambertB = new LambertBattin(ghostShip[TO_MOON], planet, departurePoint, soiEntryPos, shipOrbit.GetAxis());

        // apply any time of flight change
        bool reverse = !shortPath;

        const bool df    = false;
        const int  nrev  = 0;
        int        error = lambertB.ComputeXfer(reverse, df, nrev, t_flight);

        if (error != 0)
        {
            Debug.LogWarning("Lambert failed to find solution. error=" + error);
            return;
        }
        // Check Lambert is going in the correct direction
        //Vector3 shipOrbitAxis = Vector3.Cross(ge.GetPhysicsPosition(spaceship), ge.GetVelocity(spaceship) ).normalized;
        //Vector3 tliOrbitAxis = Vector3.Cross(departurePoint.ToVector3(), lambertB.GetTransferVelocity().ToVector3()).normalized;
        Vector3 shipOrbitAxis = Vector3.Cross(ge.GetVelocity(spaceship), ge.GetPhysicsPosition(spaceship)).normalized;
        Vector3 tliOrbitAxis  = Vector3.Cross(lambertB.GetTransferVelocity().ToVector3(), departurePoint.ToVector3()).normalized;

        if (Vector3.Dot(shipOrbitAxis, tliOrbitAxis) < 0)
        {
            error = lambertB.ComputeXfer(!reverse, df, nrev, t_flight);
            if (error != 0)
            {
                Debug.LogWarning("Lambert failed to find solution for reverse path. error=" + error);
                return;
            }
        }
        Debug.LogFormat("tli_vel={0}", lambertB.GetTransferVelocity());

        ghostShipOrbit[TO_MOON].InitFromRVT(departurePoint, lambertB.GetTransferVelocity(), timeNow, planet, false);

        // Set velocity for orbit around moon. Will be updated every frame
        ghostShipOrbit[SOI_HYPER].InitFromRVT(soiEntryPos, lambertB.GetFinalVelocity(), timeNow, ghostMoon[MOON_SOI_ENTER], false);

        // Find the exit point of the hyperbola in the SOI
        OrbitUtils.OrbitElements oe = OrbitUtils.RVtoCOE(soiEntryPos, lambertB.GetFinalVelocity(), ghostMoon[MOON_SOI_ENTER], false);
        Vector3d soiExitR           = new Vector3d();
        Vector3d soiExitV           = new Vector3d();

        OrbitUtils.COEtoRVMirror(oe, ghostMoon[MOON_SOI_ENTER], ref soiExitR, ref soiExitV, false);

        // Find time to go around the moon. TOF requires relative positions!!
        Vector3d ghostSoiEnterPos   = ge.GetPositionDoubleV3(ghostMoon[MOON_SOI_ENTER]);
        Vector3d soiEnterRelative   = soiEntryPos - ghostSoiEnterPos;
        Vector3d soiExitRelative    = soiExitR - ghostSoiEnterPos;
        Vector3d soiExitVelRelative = soiExitV - ge.GetVelocityDoubleV3(ghostMoon[MOON_SOI_ENTER]);
        double   hyperTOF           = ghostShipOrbit[SOI_HYPER].TimeOfFlight(soiEnterRelative, soiExitRelative);

        // Position the ghost moon for SOI exit (timeAtSoi includes timeNow)
        t_soiExit = timeatSoi + hyperTOF;
        ghostMoonOrbit[MOON_SOI_EXIT].LockAtTime(t_soiExit);

        // Set position and vel for exit ship, so exit orbit predictor can run.
        Vector3d ghostMoonSoiExitPos = ge.GetPositionDoubleV3(ghostMoon[MOON_SOI_EXIT]);
        Vector3d ghostMoonSoiExitVel = ge.GetVelocityDoubleV3(ghostMoon[MOON_SOI_EXIT]);

        ghostShipOrbit[EXIT_SOI].InitFromRVT(soiExitRelative + ghostMoonSoiExitPos,
                                             soiExitVelRelative + ghostMoonSoiExitVel,
                                             timeNow, planet, false);
    }