Example #1
0
        private PolynomialRegression PRLearning(double[] independentVariables, double[] dependentVariables)
        {
            var polyTeacher = new PolynomialLeastSquares()
            {
                Degree = 6
            };

            PolynomialRegression objRegressionLocal = polyTeacher.Learn(independentVariables, dependentVariables);

            double[] prediction = objRegressionLocal.Transform(independentVariables);

            predictionPL[indexPredictionPL] = prediction;

            //PredictedData[1] = prediction;

            errorPR += new SquareLoss(independentVariables).Loss(prediction);

            double[] coefOfFunction = new double[objRegressionLocal.Weights.Length + 1];
            coefOfFunction[0] = objRegressionLocal.Intercept;

            int index = objRegressionLocal.Weights.Length - 1;

            for (int i = 1; i <= objRegressionLocal.Weights.Length; i++)
            {
                coefOfFunction[i] = objRegressionLocal.Weights[index];
                index--;
            }

            double func(double x)
            {
                double y = 0;

                for (int i = 0; i <= polyTeacher.Degree; i++)
                {
                    y += coefOfFunction[i] * Math.Pow(x, i);
                }
                return(y);
            }

            double min = NormalizedInputData.GetColumn(indexPredictionPL).Min(),
                   max = NormalizedInputData.GetColumn(indexPredictionPL).Max();

            XYpairPL[indexPredictionPL]    = new double[2][];
            XYpairPL[indexPredictionPL][0] = new double[100];
            XYpairPL[indexPredictionPL][1] = new double[100];

            index = 0;
            for (double i = min; i <= max; i += 0.01)
            {
                XYpairPL[indexPredictionPL][0][index] = i;
                XYpairPL[indexPredictionPL][1][index] = func(i);
                index++;
            }

            indexPredictionPL++;

            return(objRegressionLocal);
        }
Example #2
0
        public void PolynomialRegressionLearning()
        {
            int n = LearningData.Length;

            double[] dependentVariables   = LearningData.GetColumn(3);
            double[] independentVariables = new double[n];

            //InputDataNormalization();
            for (int i = 0; i < 3; i++)
            {
                independentVariables = NormalizedInputData.GetColumn(i);
                objRegression[i]     = PRLearning(independentVariables, dependentVariables);
            }

            PredictedData[1] = new double[predictionPL[0].Length];

            for (int i = 0; i < predictionPL[0].Length; i++)
            {
                PredictedData[1][i] = (predictionPL[0][i] + predictionPL[1][i] + predictionPL[2][i]) / 3;
            }
        }